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Abstract

In this paper, we employ Credit Default Swaps (CDS) to model the joint and

conditional distress probabilities of banks in Europe and the U.S. using factor copulas.

We propose multi-factor, structured factor, and factor-vine models where the banks in

the sample are clustered according to their geographic location. We find that within

each region, the co-dependence between banks is best described using both, systematic

and idiosyncratic, financial contagion channels. However, if we consider the banking

system as a whole, then the systematic contagion channel prevails, meaning that the

distress probabilities are driven by a latent global factor and region-specific factors.

In all cases, the co-dependence structure of bank CDS spreads is highly correlated in

the tail. The out-of-sample forecasts of several measures of systemic risk allow us to

identify the periods of distress in the banking sector over the recent years including the

COVID-19 pandemic, the interest rate hikes in 2022, and the banking crisis in 2023.

Keywords: Bank risk; Contagion; Credit Default Swaps; Crisis; Default; Distress;

Factor vine copulas.
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1 Introduction

Gaining insight into the intricate patterns of co-dependence among financial institutions is

crucial. As highlighted by Coval et al. (2009); Zimmer (2012); Oh and Patton (2017), the

2008 financial crisis revealed the limitations of existing financial models, which failed to

accurately capture the complex dependencies among assets. Their shortcomings stemmed

from an overreliance on Gaussianity, simplistic correlation-based assumptions, and a neglect

of the risks posed by extreme events (tail dependencies). Recently, the 2023 collapse of

three U.S. regional banks - Silicon Valley, Signature, and First Republic - alongside the

European Credit Suisse bank serves as a compelling reminder of the critical need to model

the interdependence of financial institutions using complex non-linear, non-Gaussian models.

This event, referred to by Akhtaruzzaman et al. (2023) as an instance of financial contagion,

emphasizes the limitations of traditional models in predicting and mitigating the risks of

such interconnected financial crises, further justifying the importance of advancing beyond

simplistic correlation-based assumptions to more accurately capture the intricate dynamics

of financial markets. Financial contagion refers to the cascading effects of some initial shock

to a small portion of a financial system can have on the entire system (Dornbusch et al.,

2000; Forbes and Rigobon, 2002; Constancio, 2012). Modeling and forecasting contagion is

of major importance: for instance, given one bank has defaulted, what is the probability

that the others will default? This issue has received a great deal of attention, as evidenced

by Acemoglu et al. (2015); Dungey and Gajurel (2015); Martins (2023).

Modeling banking contagion is not a simple task, since it can arise from several sources,

as widely documented by the finance-related literature (Ballester et al., 2016; Kleinow and

Moreira, 2016; Agosto et al., 2020). Most of the articles differentiate between two channels of

contagion: systematic and idiosyncratic, also characterized in Agosto et al. (2020) as global

and local, respectively. The systematic or global channel is associated with certain global

(i.e., inter-country) factors, as seen in the 2008 financial crisis, while the idiosyncratic or local

channel is related to some bank-specific (i.e., inter-institutional) factors, as witnessed in 2023.

Understanding how contagion works and the causes of systemic risk has been proven to be

essential in the context of global financial markets. For example, Agosto et al. (2020) have

found evidence of significant vulnerability across countries and institutions at the start of the

2008 global financial crisis and during the 2011 sovereign debt crisis. Similarly, Kleinow and

Moreira (2016) identify critical factors driving systemic risk in the European banking sector,

and demonstrate the importance of these factors for bank regulatory practices. Lastly,

Ballester et al. (2016) emphasize the significance of common factors in the spread of risk

spillovers, suggesting that global connections among banking markets play a key role in the
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transmission of shocks. However, the question persists as to whether banking contagion

results from shared underlying factors, indicating systematic contagion, or if it transmits

from one bank to another, demonstrating an idiosyncratic nature. Understanding the source

of contagion is crucial as it dictates divergent strategies for policymakers.

The first contribution of this article lies in identifying both systematic and idiosyncratic

sources of financial contagion—global and local, respectively—through a novel statistical-

based approach that captures complex co-dependence patterns (fat-tailed, asymmetric, non-

Gaussian) among financial institutions. Figure 1 presents a simplified diagram of the two

contagion transmission sources: the panel on the left illustrates the case of systematic con-

tagion caused by some common factor F that affects all banks Bi in the system, meanwhile

the panel on the right shows the case of idiosyncratic contagion, which is caused by a sin-

gle bank B1. In practice, it is highly probable that both channels operate simultaneously,

with the intensity of each source fluctuating over time. Additionally, the presence of multi-

ple common factors, an ambiguous factor structure, and uncertainty regarding the quantity

and nature of connections between the nodes are additional considerations. In other words,

we are facing a complex co-dependence structure, that is high-dimensional, (potentially)

non-linear, and non-Gaussian. Therefore, in this article we propose to model the complex

co-dependence structure between financial institutions using the factor copulas of Krupskii

and Joe (2013, 2015) and the factor-vine copulas of Brechmann and Joe (2014) and Nguyen

(2019). In these models, the dependence structure is defined through latent variables using

bivariate copulas. More precisely, we employ five model designs, starting with one- and

two-factor copulas (Krupskii and Joe, 2013), that permit the units (banks) in the system to

be affected by one or several latent factors. Then, we also consider alternative factor struc-

tures that do not suffer from the curse of dimensionality, namely bi-factor and nested-factor

models (Krupskii and Joe, 2015). Nonetheless, the aforementioned setups solely accommo-

date unit-factor interaction, i.e. systematic contagion. To relax this assumption and enable

inter-institutional interaction, we adopt the factor-vine copula model (Brechmann and Joe,

2014; Nguyen, 2019) that effectively captures both forms of financial contagion, systematic

and idiosyncratic.

The second contribution of this article is the use of the Variational Bayes (VB) esti-

mation method for the proposed factor copulas. Variational Inference is a computational

technique used in Bayesian statistics and machine learning to estimate complex probability

distributions that allows for fast inference and prediction even with very large datasets, see

Blei et al. (2017) for a review. In particular, we follow Kucukelbir et al. (2017) to approxi-

mate the posterior distribution of the copula model parameters. A very relevant feature of

our proposed inference procedure is that it can also facilitate an automated model selection
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Figure 1: Systematic and idiosyncratic contagion.

The plot on the left shows the systematic contagion caused by a common factor F that affects all banks Bi (inter-country or

global), while the plot on the right shows the idiosyncratic contagion caused by a single bank B1 (inter-institutional or local).

process for determining the type of bivariate relationships between the variables, something

that cannot be easily done using e.g. maximum likelihood, for which these relationships must

be established in advance (Krupskii and Joe, 2013, 2015).

The third contribution of this article is an empirical application using the most recent

CDS (Credit Default Swap) data of European and U.S. banks. A CDS is a financial contract

in which a buyer of corporate or sovereign debt reduces possible loss arising from the default

of the issuer of such debt. The buyer pays the CDS premium regularly over the life of the CDS

contract in exchange for protection against the default of a specific borrower. The interest

in modeling and forecasting CDS spreads stems from their efficacy as indicators of market

perceptions on the likelihood of default for the reference entity, be it a company or a nation

(Creal and Tsay, 2015; Ye et al., 2022). As noted in Oh and Patton (2018), the main factor

responsible for CDS spread fluctuations is changes in the probability of default. In other

words, changes in the CDS spreads signal changes in the credit risk, and the co-movements in

the CDS spreads are directly attributable to financial contagion. Using CDS data is crucial

as it accurately reflects market views on systemic risk, providing a clear, immediate measure

of financial stability and contagion impacts, thus greatly enhancing the understanding of

risk management. Indeed, CDS spreads have been widely employed to measure and model

financial and sovereign contagion, see for example Beirne and Fratzscher (2013); Alter and

Beyer (2014); Chen et al. (2020); Agosto et al. (2020); Ye et al. (2022). Furthermore, as

demonstrated by Alter and Schüler (2012); Bruyckere et al. (2013); Alter and Beyer (2014),

there exist risk spillovers between banks and sovereigns. Therefore, successful forecasting

of default probabilities of banks can help regulators and policymakers to act accordingly in

order to reduce the possible risk spillover toward sovereigns.

In the empirical illustration, we employ the daily CDS spread data for eight European and

seven U.S. banks for a period of more than 16 years. The chosen period encompasses the 2008

global financial crisis, the 2009-2014 European sovereign debt crisis, the COVID-19 pandemic

of 2020, the 2022 interest rate spikes, and the collapse of several financial institutions in
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2023. To our knowledge, this is the longest (time-wise) CDS series considered in the default

probability modeling context in the banking sector. Our findings indicate that the financial

contagion between Europe and U.S. can be attributed to systematic channels only, where

there is a single global factor affecting both markets and two regional factors affecting each

market individually. Moreover, if we consider European and U.S. markets individually, the

financial contagion sources change. Regional financial contagion is transmitted not only from

some latent common factor (systematic) but also from one bank to another (idiosyncratic).

By using the best-fitting bi-factor and factor-vine copula models we obtain 20-step-ahead

forecasts for various measures of systemic risk. We show that our proposed models can

accurately capture the distress periods actually observed in historical CDS spread series.

The rest of the paper is organized as follows. Section 2 contains a brief review of the

related literature on the use of copula in modeling financial interconnectedness. Section 3

introduces the marginal model for bank default risk and the factor copulas used for modeling

the joint distress probabilities. We present the Variational Bayesian inference algorithm in

Section 4. Section 5 contains the application of the proposed factor copula for modeling

the joint and conditional distress probabilities of 15 European and U.S. banks. Finally,

conclusions are drawn in Section 6.

2 Related literature

Rodriguez (2007) was one of the first authors to study financial contagion between coun-

tries/regions using copulas. Using East Asian and Latin American stock indices he found

evidence of changing dependence during the periods of turmoil and increased tail depen-

dence in some markets but not the others. Aloui et al. (2011) and Kenourgios et al. (2011)

study financial contagion using copulas by analyzing the co-dependence between the devel-

oped markets, such as the U.S. and U.K., and emerging markets, in particular, the BRICs.

Arakelian and Dellaportas (2012) rely on copulas to capture instances of financial conta-

gion by employing a change-point approach. The authors propose to test the existence of

financial contagion by examining whether the number of breaks in copula parameters and

individual marginal volatilities is different from zero. This approach provides evidence of

financial contagion in equity markets and between sovereign entities during both the Asian

and Mexican crises.

Other authors, instead of focusing on country/region contagion, consider interconnect-

edness at the firm-level. Brechmann et al. (2013) study contagion in financial markets by

using vine copulas. More precisely, the authors find evidence of asymmetric tail behavior

and that U.S. banks have a stronger impact on the international financial markets as com-
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pared to Europe and Asia-Pacific using CDS spread data for 38 large international banks

and insurers for the period of 2006-2011. Similarly, Kleinow and Moreira (2016) investigate

the drivers of systemic risk and contagion among European banks. The authors employ

copulas to quantify the systemic risk contribution and systemic risk sensitivity by using the

CDS spread data of 36 European financial institutions from 2005 to 2013. Cerrato et al.

(2017) investigate joint credit risk in the U.K. banking sector by analyzing the weekly CDS

spreads from 2007 to 2015. The study reveals a strong connection between the time-varying

and asymmetric dependence structure of CDS log-differences and the joint probability of

default. The authors employ a Generalized Autoregressive Score-based dynamic asymmetric

copula model. The results confirm that a significant part of the dependence structure of

CDS spread log-differences is influenced by market factors.

An alternative method for analyzing the spread of systemic risk involves the use of

network-based models. For instance, Glasserman and Young (2015) investigate how the

interconnectedness of financial institutions can increase expected losses and defaults by as-

suming only minimal information about network structure. Paltalidis et al. (2015) explore

the spread of financial contagion within the Eurozone by developing a dynamic financial net-

work. The authors found that sovereign credit risk channel is the primary source of financial

contagion in the banking network. Nonetheless, Torri et al. (2018) highlight a significant

limitation of network-based models: the network’s structure often has to be inferred from

data that is both noisy and aggregated, or by making simplifications that may not hold true,

such as Gaussianity, for example.

Closest to our proposed approach, Oh and Patton (2018) employ a new class of one-

factor dynamic copula to model the co-dependence of CDS spreads among 100 U.S. firms

over the period 2006 to 2012. The authors find that while the probability of distress for

individual firms has decreased since the height of the financial crisis, the current levels of

joint probability of distress are significantly higher than those observed before the financial

crisis. Krupskii and Joe (2020) propose a time-varying factor copula model to capture the

non-Gaussian co-dependence between the variables of interest. The authors apply their

proposed model to the CDS spread data of 24 U.S. firms and provide estimates of the joint

probability of distress, similar to the approach in Lucas et al. (2014) and Oh and Patton

(2018).

3 Model specification

This section describes in detail the models used to capture the interconnectedness of the

default probabilities among financial institutions (banks). To this end, we first show how
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the CDS spreads are related to the default probabilities. We then use existing models to

estimate the marginal distributions for the log-differences of the CDS spread data. Finally,

we describe in detail the factor copulas used for modeling the joint behavior of the default

probabilities. We define three classes of copula models: the multi-factor copulas of Krupskii

and Joe (2013), which include the one and two-factor copulas; the structured factor copulas

of Krupskii and Joe (2015), which include the bi-factor and nested copulas; and the novel

factor-vine copulas of Nguyen (2019), resulting in five distinct model architectures.

3.1 Default probability and marginals

To assess default risk, one standard approach involves calculating the implied default proba-

bility by valuing the present value of both the premium payment and the protection payment.

Following the simplified model in Lange et al. (2016), let S be the CDS spread, usually mea-

sured in basis points (bps), at time t = 0 where the risk-free interest is r and the risk neutral

loss given default is L. The implied risk neutral default probability p is the risk-neutral

solution of premium payment and protection payment discounted for τ period of payment,

i.e.
S

1 + r
+

S

(1 + r)2
+ . . .+

S

(1 + r)τ
=

pL

1 + r
+

(1− p)pL

(1 + r)2
+ . . .+

(1− p)τ−1pL

(1 + r)τ
(1)

or equivalently,
(1− (1 + r)−τ )S

r
= pL

1− (1− p)τ (1 + r)−τ

r + p
. (2)

Here we assume that the default event only happens at the end of each payment period. The

interest rate r as well as the loss given default L are constant. We choose the EURIBOR

one year as the proxy of the risk-free interest rate and set L = 75% as in Lucas et al. (2014).

Note that, when r, p and τ are small enough, we could approximate S ≈ pL.

The CDS spread series usually exhibit very high levels of autocorrelations, sometimes

being very close to the non-stationary region, therefore, we consider the log-differences of

daily CDS spreads as si,t = log (Si,t) − log (Si,t−1) for each bank i = 1, . . . , d and time unit

t = 1, . . . , T . Additionally, we assume that CDS log-differences, si,t, follow a stationary,

asymmetric autoregressive GJR-GARCH model with skewed and fat tail innovations. More

precisely, we assume a AR(p)-GJR-GARCH(1,1) model with standardized skew-t errors given

by:

si,t = µi +

p∑
j=1

ϕj,isi,t−j + ai,t,

ai,t = σi,tηi,t, ηi,t ∼ skew-t(0, 1, ξi, νi),

σ2
i,t = ωi +

(
αi + γiIai,t−1<0

)
a2i,t−1 + βiσ

2
i,t−1,

(3)
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where µi is a constant mean, ϕj,i are the autoregressive parameters, (ωi, αi, βi, γi) are the

GJR-GARCH parameters and Iai,t−1<0 indicates whether ai,t−1 is negative, in which case

it is 1, and when positive, in which case it is 0. To guarantee stationarity and positive

variance, the root of the AR polynomial equation has to be less than one, (αi + γi) > 0

and 0 < (αi + βi + γi/2) < 1. As a consequence, ai,t is a sequence of innovations or shocks,

and ηi,t is a sequence of independent standardized innovations which is assumed to follow a

standardized skew-t distribution with skewness ξi and degrees of freedom νi, (Fernández and

Steel, 1998).

We note that any other alternative model can be specified for the marginals. Krupskii and

Joe (2013, 2015) employ an AR(1)-GARCH(1,1)-t model. Creal and Tsay (2015) consider

a stochastic volatility model with skew-t errors, Oh and Patton (2017) use an AR(1)-GJR-

GARCH(1,1) model with a nonparametric error distribution, and Oh and Patton (2018)

employ an AR(5)-GJR-GARCH(1,1) model with skew-t errors. These models can be dif-

ferent for each of the individual series. If the model is specified correctly, the probability

integral transform results in uniformly distributed data, i.e., Fsi,t(si,t) = ui,t ∼ U (0, 1),

where Fsi,t denotes the model distribution function for the CDS log-differences. Next, using

the transformed variables U = {ui,t : i = 1, . . . d; t = 1, . . . T}, the co-dependence structure

of the CDS spreads is modeled via different factor copula models.

3.2 Co-dependence modeling via copulas

The construction of flexible multivariate distributions using copulas started with the seminal

work of Sklar (1959). Since then, many studies have focused on utilizing these tools for vari-

ous issues. For more information, please refer to Joe (2014). A copula is a distribution on the

multidimensional unit cube whose marginals are uniform. The use of copulas allows for the

separation of the modeling of the individual marginals from that of the co-dependence struc-

ture as follows. Consider a collection of random variables Y1, . . . , Yd with the corresponding

marginal cumulative distribution functions FYi
(yi) = P [Yi ≤ yi] for i = 1 . . . , d and a joint

distribution function H (y1, . . . , yd) = P [Y1 ≤ y1, . . . , Yd ≤ yd]. According to Sklar (1959),

there exists a copula C such that H (y1, . . . , yd) = C (u1, . . . , ud), where ui = FYi
(yi), for

i = 1, . . . , d; the copula C is unique if the marginals are continuous. It is straightforward that

ui are realizations of a uniform random variable Ui = Fi(Yi) ∼ U (0, 1), for i = 1, . . . , d. As

noted in Oh and Patton (2017), the copula decomposition property into margins, Fi (·), and
dependence structure, C (·), has two important advantages over considering the joint distri-

bution, H (·), directly. Firstly, estimation can be performed independently, greatly reducing

the computational burden. Secondly, the choice of the marginal models is independent across
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series as well as from the co-dependence structure, as long as the models fit the data well.

This two-stage approach is called inference functions for the margins (IFM) method, and,

as shown by (Joe, 2005), under weak regularity conditions, the estimated parameters of the

copula model are consistent and asymptotically efficient.

Unfortunately, finding adequate copula functions even in moderate dimensions may be-

come complicated. One popular approach is the use of vine copulas where the dependence

structure is defined as a product of bivariate copulas using tree representations, see Czado

and Nagler (2022) for a review. However, the requirement of a significant number of param-

eters becomes an important problem when the dimension becomes high. Thus, truncated

vine copulas and factor copulas are effective tools for capturing the dependence in high

dimensional settings without requiring a large number of parameters. For example, Brech-

mann et al. (2013) assume that there is no dependence in higher tree level of vine copulas.

Alternatively, Krupskii and Joe (2013, 2015) propose factor copula models where observable

variables link to unobservable variables via bivariate copulas. On the other hand, Creal and

Tsay (2015) and Oh and Patton (2017) extend the classical factor analysis by inverting the

dependence structure from latent elliptical or skew-elliptical distributions to the constrained

copula domain. In this paper, we concentrate on the former approach as it allows for a more

flexible choice of copula functions.

3.2.1 Multi-factor copulas

Krupskii and Joe (2013) proposed a multi-factor copula model as truncated C-vines rooted

at latent variables. Note that C-vines are vines whose trees have a main root node. They

assume that the observables U1, . . . , Ud are rooted at the latent variables V0, . . . , Vp−1 such

that Ui, for i = 1, . . . , p, are independent given the latent factors Vj, for j = 1, . . . , p, which

follow uniform distributions Vj ∼ U(0, 1). Therefore, in each tree level of the factor copula

model, a common factor stays at the root of the C-vine, and observable copula variables

are linked to the common latent variable through bivariate copula functions. Table 1 in the

Online Appendix shows some common bivariate copula functions as the building block for the

one-factor and two-factor copula architectures which are illustrated in Figure 2. For example,

let us denote each bivariate copula density as cUi,V0(ui, v0), each bivariate copula distribution

function as CUi,V0(ui, v0) and the conditional distribution of Ui given V0 as FUi|V0(ui|v0) in

the first tree level of the two-factor copula model. The copula data in the second level of

the two-factor copula are obtained as pseudo observables ui|v0 = FUi|V0(ui|v0) ∈ (0, 1), where

ui|v0 are the realizations of a random variable Ui|V0 . The two-factor copula assumes that the

variables in the second level Ui|V0 are conditionally independent given the latent factor V1.

Hence, it is trivial to calculate the conditional copula density p(u1, . . . , ud|v0, . . . , vp) and the

9



integrated copula density p(u1, . . . , ud), see details in Appendix A.

V0

U1 U2 U3 U4 U5

V0

V1

U1 U2 U3 U4 U5

Figure 2: Multi-factor copulas.

The plot on the left illustrates the one-factor copula, meanwhile the plot on the right illustrates the two-factor copula for d = 5.

3.2.2 Structured factor copula

To account for a more complex dependence structure and address the curse of dimensionality

problem, Krupskii and Joe (2015) propose an alternative approach by dividing d variables

into G groups, so in total, there are G + 1 latent variables V0, V1, . . . , VG ∼ U(0, 1). This

gives rise to bi-factor and nested-factor copulas, see the illustration in Figure 3. The group

division is arbitrary and is usually based on some external information, such as geographic

location or firm sectors, for example. Alternatively, Oh and Patton (2023) adapt a k-means

clustering algorithm for the group division.

In the bi-factor copula model, all ig-th variables in group g are conditionally independent

given the latent variables, Vg, V0, for g = 1, . . . , G, and Uig does not depend on g
′
, for any

other g′ ̸= g, given V0. Note that the bi-factor copula model is an extension of the two-

factor copula, which is a bi-factor copula with G = 1. The nested-factor copula model

assumes that G latent variables, V1, . . . , VG, are generated from a common latent variable

V0 and all observables Uig in group g are independent given the latent group factor, Vg, for

g = 1, . . . , G. Krupskii and Joe (2015) demonstrate the flexibility of the structured factor

copula over the multi-factor copula models and derive the explicit form of copula density,

see details in Appendix A.

3.2.3 Factor-vine copula

Finally, Nguyen (2019) extends the factor copula model proposed by Krupskii and Joe (2013)

to include a factor copula at the first tree level and truncated vine copulas at higher tree

levels. The new proposed model aims to capture different behaviors at the tail of the joint

distribution and provides interpretable economic meaning. This idea is similar to Brechmann

and Joe (2014) who construct Gaussian copulas using one-factor and Gaussian truncated
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V0

V1 V2

U1 U2 U3 U4 U5

V0

V1 V2

U1 U2 U3 U4 U5

Figure 3: Structured factor copulas.

The plot on the left illustrates the bi-factor copula, and the plot on the right illustrates the nested-factor copula for d = 5 and

G = 2.

vine, however, their proposal ignores the issues of fat tails and asymmetric dependence

among variables.

Following the notations in Bedford and Cooke (2002), Kurowicka and Cooke (2006), and

Brechmann et al. (2012), we specify the truncated factor-vine copula as a sequence of trees,

and the nodes in each tree are linked by bivariate copula functions. Let T0, T1, . . . TK be the

trees in the truncated factor-vine copula model where K ≤ d− 1, and let Ni and Ei be the

set of nodes and edges in tree Ti, for i = 0, . . . , K, such that the following requirements are

satisfied:

1. Tree T0 has nodes N0 = {0, 1, . . . , d} and edges E0 = {{0, 1}, {0, 2}, . . . , {0, d}}.

2. For i = 1, . . . , K, the nodes in tree Ti are the edges in tree Ti−1, that is, Ni = Ei−1

3. If two edges in tree Ti are joined by an edge in tree Ti+1, they must share a common

node.

The truncated factor-vine copula is a specification of truncated regular vine copulas (R-

vine). Note that R-vines are vines only verifying requirements 2 and 3. Thus, truncated

factor-vines are truncated R-vines where at tree T0, there is a common root latent variable,

V0, that links to all observable variables by bivariate copula functions. Let the node set be

N = {N0, . . . , NK} and let the edge set be E = {E0, . . . , EK}. One associates each edge

e(j, k) in Ei with a bivariate copula distribution function, Cj,k|D(e), and a bivariate copula

density, cj,k|D(e), where j and k are conditioned nodes and D(e) is the conditioning set. The

bivariate copulas in tree T0 have an empty conditioning set.

Figure 4 shows an example of a truncated factor-vine copula with two levels. Level 1 (on

the left) contains a one-factor copula, and the remaining co-dependence among the variables,

conditional on V0, is captured by a regular vine copula on level 2 (on the right). Appendix

A derives the conditional factor-vine copula density.
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V0

U1 U2 U3 U4 U5

U4|V0

U1|V0
U5|V0

U2|V0
U3|V0

Figure 4: Truncated factor-vine copula.

The figure shows a truncated factor-vine copula with two levels for d = 5. Level 1 on the left contains a one-factor copula while

the remaining dependence of variables, conditional on v0, is a regular vine copula on level 2 (on the right).

4 Bayesian inference

Krupskii and Joe (2013, 2015) use maximum likelihood estimation for structured factor

copula models. However, the parametric families of the bivariate copula links are chosen

at the beginning which limits the flexibility of the model. In this section, we start with a

factor copula with a known structure and connection links. We apply Variational Bayesian

inference, similar to Nguyen et al. (2020), to estimate the copula parameters. Then, we

discuss an extension of an automated process to identify the dependence structure and to

select the appropriate bivariate copula functions.

4.1 Prior and posterior distributions

Assuming that we have a pre-specified factor copula structure together with bivariate linking

copulas, the goal is to make inference on the latent variables v0:G,1:T and copula parameters

θ given the copula data U = {ui,t : i = 1, . . . d; t = 1, . . . T}. For example, in the truncated

two-level factor-vine copula model, let Θ = {v0,1:T ,θ} be the set of parameters of interest,

where v0,1:T = {v0,1, . . . , v0,t} and θ = {θ01, . . . ,θ0d and θjk, for e(j, k) ∈ E1}. We assume

a uniform distribution U(0, 1) for the latent variables, v0,t, and an uninformative but proper

prior distribution for any set of bivariate copula parameters in θ so that the Kendall-τ is in

the range of [−0.9; 0.9]. See the details of prior distributions for copula parameters in Table

1 of the Online Appendix.

The prior density is a product of independent prior distributions of the model parameters,

π (Θ) =
T∏
t=1

π (v0,t)
d∏

i=1

π (θ0i)
∏

e{j,k}∈E1

π (θjk). Using the conditional copula density in Ap-

pendix A, the posterior distribution up to a normalizing constant of the truncated two-level
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factor-vine copula can be written as,

π(Θ|U) ∝
T∏
t=1

p(u1,t, . . . , ud,t|v0,t,θ)π(Θ)

∝
T∏
t=1

 ∏
e{j,k}∈E1

cUj ,Uk|V0

(
uj,t|v0,t , uk,t|v0,t ;θjk

) d∏
i=1

cUi,V0 (ui,t, v0,t;θ0i)

×
T∏
t=1

π(v0,t)
d∏

i=1

π(θ0i)
∏

e{j,k}∈E1

π(θjk).

(4)

The truncated factor-vine copula requires obtaining a new set of pseudo data, ui,t|v0,t =

FUi,t|V0(ui,t|v0,t), whenever we generate a new sample of any element in Θ which makes the

implementation of the Markov Chain Monte Carlo (MCMC) computationally expensive.

Hence, in the next section, we employ an approximate approach to obtain samples from the

posterior distribution, namely, Variational Bayes.

4.2 Variational inference

Variational inference is a computational technique used in Bayesian statistics and machine

learning for approximating complex probability distributions. For the factor copula models,

described above, we are interested in making inferences on the factor copula parameters Θ

based on the posterior distribution π(Θ|U). Variational Bayes proposes a family of distri-

butions Q and finds a proposal distribution q(·;λ) ∈ Q, parameterized by a vector λ, to

minimize the Kullback-Leibler divergence between q(Θ;λ) and π(Θ|U). However, as π(Θ|U)
is defined up to a normalizing constant, VB instead maximizes the evidence lower bound

(ELBO):

ELBO(q) = Eq[logp(U ,Θ)]− Eq[logq(Θ;λ)]

= logp(U)−KL(q(Θ;λ)||π(Θ|U)) ≤ logp(U)

such that when q(Θ;λ) = π(Θ|U), we obtain ELBO = logp(U). Therefore, VB turns

Bayesian inference into an optimization problem of finding λ to maximize the ELBO.

Blei et al. (2017) review different approaches in choosing the variational distributions

and optimization techniques. As the posterior distribution of the structured factor copula

is complex, we follow Kucukelbir et al. (2017) and use a black box variational inference

based on stochastic approximation of ELBO. The general framework is to sample from the

distribution q(Θ;λ) and use these values to approximate the expectations in ELBO using

Monte Carlo integration. In order to find the optimal ELBO, we also sample from q(Θ;λ)

and take the average of the derivatives of ELBO with respect to the parameters and update

13



the variational parameters according to the gradients. For example, in the truncated factor-

vine copula presented in the previous section, the mean-field approximation assumes that Q
is a Gaussian distribution and

q(Θ;λ) =
T∏
t=1

π(v0,t;λ)
d∏

i=1

π(θ0i;λ)
∏

e{j,k}∈E1

π(θjk;λ), (5)

where λ contains the posterior mean and posterior variance of the Gaussian distribution.

We illustrate the schematic representation of the algorithm in Appendix B. Nguyen (2019)

presents multiple simulation studies regarding the trade-off between the computational speed

and estimation accuracy using VB as compared to MCMC for truncated factor-vine copula

models. The author shows that VB approximates quite well the posterior distribution of the

latent variable and slightly underestimates the standard deviations of the bivariate copula

parameters.

4.3 Model selection

Given a pre-specified factor copula structure, it is fast to estimate the model parameters using

VB. However, the parametric families of the bivariate copula links are usually unknown due

to the nature of the latent variables. For the structured factor copula model, Krupskii and

Joe (2015) use graphical tools and Fan and Joe (2023) use a proxy estimation to define the

bivariate copula links between variables. On the other hand, Nguyen et al. (2020) derive an

automatic procedure to recover the hidden dependence structure. This procedure iterates

between the estimation of the latent common factors and the copula model selection between

the latent factors and the observables. For example, we first assign all Gaussian bivariate

copulas to the structured factor copula and estimate the common latent factors using VB.

Given the posterior medians of the latent factors, we consider other copula models and select

the best family for the bivariate links between the observables and the latent factors using

the Bayesian information criterion (BIC). We reassign the chosen copula families for the

links and reestimate the model until the bivariate links remain unchanged or until a certain

number of iterations is reached. Nguyen et al. (2020) show that this procedure increases

the BIC of the factor copula model. Also, the accuracy rate of the correct links is above

70% in high dimensional simulations with very similar log-likelihoods as compared to true

simulated models. For the truncated factor-vine copula models, we can select the bivariate

copulas jointly among levels or level-by-level, which is similar to Dissmann et al. (2013). We

use a one-factor copula model to choose the bivariate links in the first level and apply the

algorithm in Dissmann et al. (2013) for higher levels given the pre-specified copulas in the
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first level. Nguyen (2019) shows that the accuracy rates are also high in all levels of the

factor-vine copulas.

5 Empirical illustration

5.1 Data

In this section, we employ the proposed factor copulas to analyze the joint distress probability

of European and U.S. banks. We select only the banks that have actively traded in CDS

during the designated period between January 1, 2007 and May 1, 2023 (16 years and 4

months). Finally, we extract daily data for 5-year maturity CDS of senior unsecured debt

for 8 European and 7 U.S. banks from Bloomberg. The ticker symbols and full names are

summarized in Table 1. The selection of specific U.S. and European banks for this analysis

was primarily influenced by the availability and depth of CDS data within the Bloomberg

database. The limitation in the span of CDS data for some banks, or the lack of such

data for others, imposed a focus on those institutions that offered a sufficient historical

record to ensure the reliability of our analysis. Furthermore, the selected banks have high

liquidity (as evidenced by individual CDS spread plots in the Online Appendix), which

is important for correctly predicting systemic risk and the spread of financial contagion.

The proposed approach can be easily scaled up to higher dimensions, depending on data

availability. Nguyen (2019) and Nguyen et al. (2020) provide simulation studies containing

100 series, and show that VB estimation and automatic model selection procedure can be

executed quickly and accurately.

Table 1: Bank data.

European banks U.S. banks
Ticker symbol Full name Ticker symbol Full name
BCS Barclays AXP American Express Company
BNP BNP Paribas BAC Bank of America Corporation
CS Credit Suisse C Citigroup
GLE Societe Generale GS The Goldman Sachs Group
ISP Intesa Sanpaolo JPM JPMorgan Chase
SAN Santander MS Morgan Stanley
UBS UBS WFC Wells Fargo
UCG UniCredit

Notes: The table reports main information for the European and U.S. banks: ticker symbol, full

name and the main operating market.

Before proceeding, we impute some missing values for some CDS spread series, see de-

tails in Online Appendix. After the treatment, we have a sample of T = 4110 observations.

Figure 5 draws the dynamics of the CDS spreads, measured in basis points, and the implied
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marginal default probabilities, obtained using Equation 2. For both regions, various signif-

icant increases in CDS spreads indicate critical financial stress periods within the banking

sector. The first increase is during the global financial crisis, where the U.S. financial sector

suffered a greater impact as compared to the European banking sector. The second visible

increase is during the turbulent developments in the European sovereign debt market during

2009-2014 (Kleinow and Moreira, 2016), which affected both, Europe and U.S. banking sec-

tors. As noted in the Financial Times, “Credit default swaps on major U.S. banks (...) hit

fresh highs for the year on Tuesday as problems in Greece intensified.”1. There is another

notable increase at the year 2020 mark, which corresponds to the COVID-19 pandemic out-

break. Finally, the last peak in the CDS spreads is at the very end of the sample, which

reflects the effect of the 2022 interest rate spikes on the banking sector and the early 2023

banking panic. The European region has a more pronounced increase because Credit Suisse

bank is included in the sample, meanwhile, the CDS spread data for the three bankrupt U.S.

banks is not available and, therefore, not reflected in the plot. Major descriptive statistics

for the crude CDS spread data are reported in Online Appendix. The minimum values of

CDS spreads vary between 5 and 20 bps, meanwhile, the maximum values go as high as 1360

bps for Morgan Stanley during the global financial crisis and 1082 bps for Credit Suisse in

2023. The bottom row of Figure 5 draws the corresponding implied default probabilities for

both regions. We can observe that the implied probabilities closely resemble the CDS spread

dynamics. For both regions, the highest average implied default probabilities were reached

during the worldwide financial crisis, and they have not reached those levels ever since (at

least for the banks in the sample).

Next, the crude CDS spread data is converted into the log-differences si,t, as described

in Section 3. Table 2 reports the summary statistics for the log-differences (in %) of the

CDS spreads of all 15 banks, and Figure 6 plots the evolution of the log-differences. Most of

the variables exhibit positive skewness and excess kurtosis, similar to the results in Oh and

Patton (2018). Note that in some cases the log-differences are as low as negative 100%. This

does not pose any problems in the analysis, as the log transformation is used for mathematical

convenience only. In the modeling and forecasting of systemic risk in Section 5.5 we work

with the CDS spread data and not the log-differences.

Finally, Figure 7 plots the correlations between the log-differences. We can clearly see

two groups: European banks are in the bottom left corner, meanwhile U.S. banks are in

the right top corner. American Express Company (AXP) has the lowest correlation with

any of the banks. The overall correlations are always positive and range from medium to

very high, indicating a very high level of interconnectedness among the banks; more regional

1https://www.ft.com/content/515508a2-9edc-11e1-9cc8-00144feabdc0

16

https://www.ft.com/content/515508a2-9edc-11e1-9cc8-00144feabdc0


2010 2015 2020

0
20

0
60

0
10

00
14

00

European banks

C
D

S
 s

pr
ea

d 
(b

ps
)

Individual banks
Mean

2010 2015 2020

0
20

0
60

0
10

00
14

00

U.S. banks

C
D

S
 s

pr
ea

d 
(b

ps
)

Individual banks
Mean

2010 2015 2020

0.
00

0.
10

0.
20

0.
30

European banks

p

Individual banks
Mean

2010 2015 2020

0.
00

0.
10

0.
20

0.
30

U.S. banks

p

Individual banks
Mean

Figure 5: CDS spreads and implied default probabilities by region.

The figures show the evolution of the CDS spreads measured in basis points (top row) and the evolution of the implied default

probabilities (bottom row) for January 2007 to May 2023. The European region contains 8 banks and the U.S. has 7 banks in

total. The dynamics of each individual bank are in gray, and the average is in black.

Table 2: Descriptive statistics for the log differences (in %) of CDS spreads.

mean Q2 sd skew kurt min max 1stACF ADF(10) LB(10) ARCH(10)
BCS 0.07 -0.05 4.26 -0.22 17.23 -47.30 35.74 0.16 0.01 0.00 0.00
BNP 0.06 -0.04 4.53 0.17 11.03 -31.51 34.86 0.12 0.01 0.00 0.00
CS 0.07 -0.02 4.45 -2.35 85.99 -101.62 57.53 0.18 0.01 0.00 0.00

GLE 0.06 -0.04 4.45 0.40 13.13 -39.20 40.96 0.12 0.01 0.00 0.00
ISP 0.07 -0.03 5.01 1.26 31.68 -46.07 80.52 0.06 0.01 0.00 0.00
SAN 0.05 -0.05 4.38 0.07 12.09 -42.76 35.56 0.18 0.01 0.00 0.00
UBS 0.07 -0.04 4.15 0.18 15.79 -47.25 35.19 0.12 0.01 0.00 0.00
UCG 0.06 -0.06 4.45 0.37 14.58 -40.36 41.97 0.18 0.01 0.00 0.00
AXP 0.04 -0.03 3.83 0.47 13.39 -31.41 30.27 0.00 0.01 0.00 0.00
BAC 0.07 -0.07 4.67 0.65 44.14 -60.07 68.96 0.06 0.01 0.00 0.00

C 0.06 -0.09 4.33 -0.16 29.03 -52.11 40.12 0.12 0.01 0.00 0.00
GS 0.04 -0.09 4.31 0.39 43.43 -57.55 64.15 0.06 0.01 0.00 0.00

JPM 0.04 -0.07 3.94 0.02 18.77 -49.07 35.98 0.12 0.01 0.00 0.00
MS 0.03 -0.10 4.82 -3.33 135.57 -118.53 79.94 0.01 0.01 0.00 0.00

WFC 0.07 -0.05 4.03 1.15 25.13 -41.46 54.58 0.15 0.01 0.00 0.00

Notes: The table reports the descriptive statistics for the log differences (in %) of CDS spreads. 1stACF is the first-order

autocorrelation, ADF(m) is the p-value for the Augmented Dickey-Fuller test with m lags, the LB(k) is the p-value for the

Ljung-Box test for autocorrelation of k lags, and ARCH(l) is the p-value for the test for ARCH effects with l lags. The data

is from January 1st, 2007 to May 1st, 2023.
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Figure 6: CDS log-differences by region.

The figures show the evolution of the CDS spread log-differences (in %) from January 1st, 2007 to May 1st, 2023. European

region contains 8 banks and the U.S. has 7 banks in total. The dynamics of each individual bank are in gray, and the average

is in black.

than global. European banks seem to show a stronger overall correlation than U.S. banks,

indicating a more highly interconnected system.
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Figure 7: Correlation matrix of CDS log-differences.

The figure shows the sample Pearson correlation matrix between the log-differences of the CDS spreads. European banks are

in the lower left quadrant, and U.S. banks are in the upper right quadrant.

5.2 Marginals

Next, we model the log-differences of CDS spreads si,t using an AR(4)-GJR-GARCH(1, 1)

with the skew-t errors, as described in Section 3.1. All details related to the marginal

modeling, such as the parameter estimation results, residual descriptive statistics, and plots

are in the Online Appendix. Most of the banks have estimated positive AR(1) and AR(2)

and negative AR(3) and AR(4) coefficients, similarly as in Oh and Patton (2017). The

persistence parameter of the GJR-GARCH(1, 1) model indicates strong volatility persistence
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for all assets, and the asymmetric volatility response parameter γ is negative in almost all

cases, except for AXP, where it is statistically insignificant. In contrast to the “conventional”

financial assets, where positive log returns typically signal positive developments, positive

values of CDS spread log-differences mean an increase in CDS spreads, which conveys adverse

developments or negative news. Therefore, the estimated leverage parameter γ has a negative

sign: past negative log-differences are good news that decrease the current level of volatility.

Finally, the estimated skewness and degrees of freedom parameters indicate that the error

distribution is asymmetric and fat-tailed for all banks. The specified model is appropriate

for the data, as the model residuals exhibit no autocorrelation or heteroscedasticity, and the

probability integral transforms of the log-differences result in uniformly distributed data, i.e.

Fsi,t(si,t) = ui,t
iid∼ U(0, 1), as confirmed by the Kolmogorov–Smirnov, Anderson-Darling, and

data-driven smooth tests for uniformity. All details are available in the Online Appendix.

5.3 In-sample results

Next, we model the uniformly distributed data U = {ui,t : i = 1, . . . d; t = 1, . . . T} using the

one-factor, two-factor, nested-factor, bi-factor, and two-level truncated factor-vine copula

models proposed in Section 3. Apart from the proposed specifications, we also consider

three benchmark models: a two-factor copula with only Gaussian links (Two-factor G),

a Constant Conditional Correlation model with a full correlation matrix (Full G (CCC),

Bollerslev, 1990), and a truncated-vine copula (Trunc Vine, Brechmann et al., 2012; Czado

and Nagler, 2022). The two-factor Gaussian model does not accommodate asymmetric or

fat-tailed co-dependence. The CCC model, while fully Gaussian and based on correlations,

does not incorporate a factor structure. Finally, the truncated vine copula model allows

only for unit-to-unit interaction (without common factors), which can also be non-Gaussian.

The ad hoc grouping of the variables, necessary in the nested-factor and bi-factor copulas

is based on the geographic location of the banks (Europe and U.S.). We have fitted the

proposed models on the full sample as well as four approximately equal-length subsamples

to account for a possible change of co-dependence structure over time. Table 3 reports the

in-sample Bayesian Information Criteria, while Online Appendix contains the results for the

log likelihoods. Similarly, Oh and Patton (2018) have also employed log likelihoods, AIC,

and BIC criteria for the in-sample model evaluation.

The first four columns of Table 3 contain the BICs for the four subperiods, meanwhile,

the last column reports the overall BIC for the full sample. For both regions individually,

the factor-vine copula is decidedly the best, indicating that both contagion channels are

at work: systematic and idiosyncratic. Nonetheless, there is one exception. For the U.S.
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Table 3: In-sample Bayesian Information Criteria.

Subsample 1 Subsample 2 Subsample 3 Subsample 4 Full sample
Jan 2007 - Dec 2010 Jan 2011 - Dec 2014 Jan 2015 - Dec 2019 Jan 2020 - May 2023 Jan 2007 - May 2023

U.S. banks
Two-factor G -3768.02 -5515.66 -6442.52 -5674.15 -20266.85
Full G(CCC) -3809.97 -5530.34 -6503.93 -5640.27 -20260.08
Trunc Vine -4178.36 -5529.05 -6854.12 -6061.82 -21793.50
One-factor -4200.99 -5830.27 -7006.16 -6170.19 -22622.88
Two-factor -4182.95 -5803.62 -6979.97 -6098.57 -22610.04
Factor-Vine -4455.18 -5834.02 -7017.22 -6161.97 -22698.24

European banks
Two-factor G -7248.53 -8956.40 -8413.19 -6473.14 -30475.41
Full G(CCC) -7342.71 -9070.69 -8477.18 -6507.00 -30939.64
Trunc Vine -7348.53 -8960.56 -8608.54 -6972.59 -31828.56
One-factor -7359.31 -8951.08 -7829.39 -6725.13 -30878.72
Two-factor -7407.53 -8884.31 -7873.32 -6980.22 -32215.13
Factor-Vine -7446.67 -9125.10 -8646.63 -7096.86 -32670.12

U.S. and European banks
Two-factor G -11135.07 -14671.44 -14361.85 -12402.50 -51236.18
Full G(CCC) -11237.97 -14747.83 -15071.31 -12427.77 -52604.30
Trunc Vine -11803.37 -14851.49 -15779.86 -13519.86 -55033.73
One-factor -9175.17 -11433.56 -10301.33 -10392.73 -41131.21
Two-factor -11744.15 -14924.44 -14964.80 -13293.54 -54773.96
Bi-factor -12016.55 -15322.08 -15809.10 -13429.70 -56212.63

Nested-factor -11761.48 -15202.06 -15191.11 -13472.43 -54336.74
Factor-Vine -11563.51 -14732.43 -15498.63 -13346.46 -53731.25

Notes: The table reports the in-sample Bayesian Information Criteria (BIC) for four subperiods and the full sample. We compare our proposed factor

copula model with benchmarks: a two-factor copula with only Gaussian links (Two-factor G), a Constant Conditional Correlation model with a full

correlation matrix (Full G (CCC), Bollerslev, 1990), and a truncated-vine copula (Trunc Vine, Brechmann et al., 2012; Czado and Nagler, 2022).

in the subsample 4 (January 2020 - May 2023), a period that includes COVID-19, 2022

interest rate spikes, early 2023 banking panic, the best is the one-factor copula. From the

economic perspective, this means that during this specific period, the interconnectedness of

the U.S. banking sector can be explained due to some common latent factor rather than the

interactions between banks. Finally, in considering both regions together, the structure that

describes the co-dependence between U.S. and European banks the best is the bi-factor model

(with the exception in subsample 4). Such specification permits for a common latent global

factor, and two regional latent factors to govern the co-dependence in the banking sector.

The above results provide some interesting insights: on a regional level, banking sector

contagion has two channels, systematic and idiosyncratic (inter-institutional). However, on

the global level, the banking sector is mostly affected by global and regional common factors,

and not by individual banks, i.e. contagion is mostly due to systematic factors.

For all models, the vast majority of factor-unit links are t copulas, indicating fat-tailed but

symmetric dependence between the latent factor(s) and individual banks. In other words,

the systematic contagion channel is best described using fat-tailed specifications. This is

also confirmed by the overwhelming underperformace of both Gaussian distribution-based

models, the two-factor Gaussian and the CCC model. The degrees of freedom parameter

can vary from 2.2 to 41.1 for different models, different banks, and different subsamples. For
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the factor-vine copula, even though the factor-unit links are mostly t, the unit-unit links at

the second tree level are more heterogeneous, and depend on the units (banks) as well as

the time period. As an example, Figure 8 draws the second tree level for the factor-vine

copula for the last subperiod and the full sample. For the last subperiod (top row), in the

U.S., the selected C-vine structure assigns three links to Wells-Fargo bank with t, Frank,

and Gumbel copulas. In Europe, the Italian UniCredit (UCG) bank has as many as five

links, with many different types of links. Bottom row presents a similar plot, but for the

entire sample. For the U.S., the Bank of America (BAC) now has the most links, all Frank

copulas (symmetric and fat-tailed). In Europe, the UniCredit bank remains with the highest

number of links. Interestingly, the link structure is more stable for Europe than for the U.S.

across both subsamples. In other words, for the U.S, most of the co-dependence is captured

in the first level via the latent factor, and the remaining co-dependence is weak and more

difficult to identify, resulting in different vine copula structures for each subperiod. On the

other hand, in the European region, the latent factor at the first tree level captures only a

part of the co-dependence, and the remaining links at the second level are relatively strong

and retain similar structures across different subsamples.
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Figure 8: Second level of the truncated factor-vine copula.

The figure shows the detailed second tree level of factor-vine copula for the U.S. (on the left) and European (on the right)

banks. Top row is for the last subsample: from January 2020 to May 2023, bottom row is for the entire period: from January

2007 to May 2023.
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5.4 Out-of-sample results

For the out-of-sample forecasting exercise, we retain the last 1000 observations, from Febru-

ary 28th 2019 till May 1st, 2023. We then roll the dataset in 20-day increments (approxi-

mately one month), re-estimate all the models, and predict the co-dependence structure for

the next 20-day period. In order to evaluate the out-of-sample forecasting performance of

individual models we calculate the negative log predictive score (LPS), the negative condi-

tional likelihood score (CdL), and the variogram score (VarS). The LPS takes into account

the goodness of fit of the entire predictive distribution and is one of the most commonly

used measures to evaluate the predictive model performance. The CdL, on the other hand,

allows to evaluate a certain region of the predictive distribution, for example, the upper tail.

The upper tail is defined as a d-dimensional quadrant where the CDS log-differences for all

the banks fall within the top 50th percentile. This typically covers approximately 10% of

the data, depending on the time period. Note that contrary to the “conventional” assets,

the extreme negative events of the CDS spread log-differences happen in the upper tail, and

not in the lower tail. Finally, the VarS is based on pairwise differences of the components of

the multivariate forecast. This way we can evaluate point-wise forecast accuracy. For details

concerning the calculation of each of the scores and their properties, refer to Bjerreg̊ard et al.

(2021). The results for LPS, CdL, and VarS for the proposed models are reported in Table

4.

Table 4: Out-of-sample forecast results.

One-factor Two-factor Bi-factor Nested-factor Factor-Vine
(a) Negative log predictive scores

US banks -2874.50 -2884.82 - - -2892.41
Euro banks -3165.57 -3254.41 - - -3307.69

US and Euro banks -4932.64 -6196.65 -6365.17 -6313.78 -6127.93
(b) Negative conditional likelihood predicted scores

US banks -1532.82 -1537.80 - - -1533.43
Euro banks -1755.38 -1799.65 - - -1788.37

US and Euro banks -1910.98 -2036.85 -2032.17 -1977.84 -2037.89
(c) Variogram score (p = 0.5)

US banks 811.76 811.84 - - 809.90
Euro banks 1020.67 1017.73 - - 1016.08

US and Euro banks 4324.11 4323.60 4264.03 4430.45 4272.60

Notes: The table reports the sum of the negative log predictive scores (LPS), negative conditional

likelihood scores (CdL), and variogram scores (VarS) for the last 1000 observations (from February 28th,

2019 to May 1st, 2023, both inclusive). The scores are calculated by rolling the sample every 20 days, re-

estimating the models, and predicting the co-dependence structure for the next 20 days. Lower numbers

mean better. The parameter p = 0.5 next to the VarS indicates the order of the score, see the discussion

in Bjerreg̊ard et al. (2021).

In terms of LPS and VarS, the out-of-sample forecasting results are consistent across the

two scoring rules. Similar to the in-sample results, the banking sector co-dependence is best
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described via factor-vine copula if we consider both regions individually. In other words, the

financial contagion has systematic and idiosyncratic sources in regional financial systems.

On the other hand, if we consider both banking systems jointly, then the bi-factor copula

provides the best out-of-sample forecasting results. This means that both financial systems

are governed by some common global factor and two individual regional factors. In this case,

the bank-to-bank (idiosyncratic) contagion is not as important. Interestingly, the CdL metric

provides alternative model ordering: if we consider the upper tail of the distribution only,

then for both regions the two-factor copula is the best, meanwhile for both regions jointly the

factor-vine copula provides the smallest value of the CdL. In other words, to account for the

behavior in the upper tail, a multi-source systematic contagion channel is prevalent within

each region individually. Furthermore, when considering the upper tail of the European and

U.S. banking systems collectively, both global and local contagion channels are in operation.

Even though both contagion channels are in operation, we further investigate which

contagion channel is dominant, if any. Following Diebold and Yılmaz (2014), we decompose

the K-step ahead variance forecast error of the reduced-form vector autoregression (VAR)

to assess the bank-wise and overall system conectedness. For illustration, we select March

16th, 2023, around the recent collapse of several U.S. banks, and compare connectedness in

two models: the one-factor copula, allowing for the systematic contagion channel only, and

the factor-vine copula, permitting both systematic and idiosyncratic channels.

We find that the bank-wise and global connectedness measures are relatively similar in

both models, suggesting the dominance of the systematic contagion channel. The results are

consistent with the findings in the related literature. For example, Ballester et al. (2016)

has studied financial contagion between European and U.S. banks using the CDS spread

data. By employing a generalized VAR approach, they show that the systematic contagion

component is always greater than the idiosyncratic component, emphasizing the importance

of common factors in the risk spillover transmission. These insights have important im-

plications for policymakers and practitioners in the financial sector: systematic shocks to

the banking system have a much greater effect than the idiosyncratic ones, and should be

handled differently.

All details regarding connectedness estimation and the related tables are available in

Appendix C at the end of the manuscript.

5.5 Measuring systemic risk

Modeling and forecasting CDS series allows to model and forecast instances of financial dis-

tress, which are defined as events where the implied probability of default exceeds a certain
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threshold. Instead of relying solely on the implied probability of default, we focus on the di-

rectly observable CDS series to identify periods of distress. A similar approach was employed

by Oh and Patton (2018), for example. The CDS prediction is carried out by simulating

10,000 samples of the d-variate variable ut and applying the inverse probability integral trans-

form (the quantile function) resulting from the forecasted AR(p)-GJR-GARCH(1,1)-skew-t

model. This procedure is repeated for each forecast instance t and for each asset i.

This enables us to calculate four measures of systemic risk, namely the individual Prob-

ability of Distress (PD) (Oh and Patton, 2018), the Joint Probability of Distress (JPD)

(Segoviano and Goodhart, 2009; Lucas et al., 2014; Oh and Patton, 2018; Krupskii and Joe,

2020), the Expected Proportion in Distress (EPD) (Hartmann et al., 2005; Oh and Patton,

2018) and the Expected Shortfall (ES) (Oh and Patton, 2017).

Distress happens when the observed CDS spread is larger than some threshold. The

distress indicator for bank i, for i = 1, . . . , d can be defined as Di,t+20 = 1{Si,t+20 > Ci,t+20}.
Hence, the distress indicator D will be equal to one if the 20-step-ahead predicted CDS

spread Si,t+20 is larger than some threshold C. The threshold can be calculated as the upper

95 (or 99) percentile of the historical CDS spreads. Since in the forecasting exercise we

have a rolling sample, the threshold C is time-varying. Therefore, C is recalculated as the

upper 95 percentile of the last 1000 observations of the CDS spreads. Then the systemic risk

measures are calculated as follows:

PDi,t = Prt [Di,t+20 = 1] ,

JPDk,t = Prt

[(
1

d

d∑
i=1

Di,t+20

)
≥ k

d

]
,

EPDi,t = Et

[
1

d

d∑
j=1

Dj,t+20 Di,t+20 = 1

]
,

ESi,t = Et

[
Si,t+20

∣∣∣∣∣
(

d∑
j=1

1{Sj,t+20 > Cj,t+20}

)
> 1

]
.

First, PD measures the probability of each individual bank being in distress in the next 20

days. Since at each instance t for each asset i we simulate 10,000 scenarios for the spreads

Si,t+20, this probability is estimated as a sample proportion of the spreads that reach beyond

the threshold. Second, the JPD measures the probability that a certain proportion of banks

will be in distress. This probability should be decreasing as k increases since it is less and

less likely for more and more banks to be in distress at the same time. Third, the EPD

presents an expected proportion of banks in distress when bank i has suffered distress. It

might provide some insights into individual banks’ relative importance in the system and its
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effect on the rest of the banks. Finally, the ES metric calculates the expected CDS spread

of bank i given that 2 or more banks have CDS spreads above some threshold C.

Figure 9 summarizes the results for all banks for the out-of-sample period. Please note

that the presented plots offer a general overview of the trends in systemic risk measures. For

precise values of a specific risk measure for a particular bank on a given day, refer to the

detailed tables in the Online Appendix. Also, the presented results are for the entire system

as a whole, i.e. using the bi-factor copula model. All detailed tables for the region-wise

(Europe and the U.S.) systemic risk measures are available in the Online Appendix as well.

First, from sub-figures (a1) and (a2) we can observe an overall increase in the individual

distress probabilities (PD) in March - April 2020. The increase was universal for all banks

in the system, to as high as 0.83 for WFC. This dramatic increase in the distress probability

can be attributed to the COVID-19 pandemic. Stepankova and Teply (2023) have docu-

mented the increase in the probability of default in the banking sector during the COVID-19

pandemic, and Duan et al. (2021) have found that the pandemic has increased systemic risk

in the banking sector across as many as 64 countries. Another universal peak can be seen in

the year 2022 and the beginning of 2023, with a sharp drop in August 2022. This persistent

high probability of distress throughout the year can be attributed to the hike in the interest

rates: only in 2022 the Fed raised interest rates five times and ECB - three times. As noted

in a report by the Financial Stability Oversight Council (2013), a fast spike in yields can

affect financial stability. For example, if a bank has a large portion of its assets locked in

long-term bonds, the market value of those bonds goes down when interest rates start going

up. If at the same time, a large number of depositors withdraw their funds due to concerns

about the bank’s solvency or liquidity (a phenomenon called a bank run), this might lead

to a liquidity crunch and, in an extreme case, a bank’s failure (Lyócsa et al., 2023). This

indeed played an important part in the collapse of three regional U.S. banks (the Silicon

Valley, Signature, and First Republic banks) in early 2023 (Lyócsa et al., 2023), which also

triggered the downfall of the already vulnerable Credit Suisse. These events are visible in

the plot as the peak of the probability of distress at the end of the sample.

Next, sub-figure (b) draws the Joint Probability of Distress (JPD) series that represents

the probability that at a given moment in time, at least d banks will be in distress, for

d = 1, . . . , 15. Similarly to the previous plot, there are two major turbulent periods, namely

the COVID-19 pandemic and the interest rate hikes in 2022. During those periods, the

probability that at least one bank will be in distress reaches almost one. Same as in the

individual distress probabilities series, there is a sharp drop in the JPD in August 2022,

which has no apparent explanation. Finally, the 2022 - March 2023 peak is also visible at

the end of the period.
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Figure 9: Forecasts of systemic risk.

The figure shows the forecast measures of systemic risk - PD, JPD, EPD, and ES - in the next 20 days for the out-of-sample

period from February 28th, 2019 to March 29th, 2023.
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Sub-figures (c1) and (c2) present the Expected Proportion in Distress (EPD), which

permits to evaluate the individual banks’ relative importance in the system. For example,

on February 28th, 2019 the EPD value for Barclay’s bank (BCS) is 0.13, which means that

if in 20-days-ahead Barclay’s bank suffers distress, then 13% of all banks in the system will

also suffer distress. Overall, it seems that U.S. banks’ relative importance in the overall

system is of slightly smaller magnitude as compared to the European banks, at least for the

selected sample. Interestingly, during the beginning of the COVID-19 pandemic, the Intesa

Sanpaolo bank’s EPD skyrocketed from 0.07 to as high as 0.89. Italy was the European

country where COVID-19 struck the strongest: it had the highest death toll and it was the

first one to go into lockdown. Therefore, if Italy’s largest bank, Intesa Sanpaolo, were to

suffer distress during that period, that would have sent a very strong signal to the rest of the

countries about the possible adverse effects of the COVID-19 pandemic on the banking sector.

The figure also gives a good approximation of the periods for “heightened sensitivity”. For

example, we can observe a universal increase in the EPD values during periods of financial

distress: the COVID-19 pandemic, the 2022 interest rate hikes, and the 2023 collapse of

some European and U.S. banks.

Finally, sub-figures (d1) and (d2) summarize the results for the Expected Shortfall (ES)

of CDS spreads when 2 or more banks are in distress. For example, during the COVID-19

pandemic (the very beginning of 2021), Goldman Sachs bank had the predicted ES value

of 459 bps, given that two or more other banks in the system were to suffer distress. This

indicates a high vulnerability of the Goldman Sachs bank during this specific period. In

particular, for that specific time, Goldman Sachs’s probability of distress is estimated to be

0.37, which can be attributed to a sudden 30% daily increase in the CDS spreads (from 52

to 71 bps). Finally, at the end of the sample, Credit Suisse exhibits expected CDS spreads

as high as 400, which closely resembles the actual observed CDS data for this specific bank.

6 Conclusion

In this paper, we employ five different models using multi-factor, structured factor, and

factor-vine copulas to forecast both the joint and conditional probabilities of distress for

a sample of banks. We employ the Variational Bayes estimation method to approximate

the posterior distributions of both latent factors and copula model parameters. We also

incorporate an automatic procedure to select the best bivariate links among the nodes. We

find that in-sample, for U.S. and Europe individually, the best fitting model is the factor-

vine copula. In other words, there are two financial contagion channels at work: systematic

(governed by some latent factor at the first level) and idiosyncratic (governed by vine copulas
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at the second level). Most of the factor-unit links at the first level are t copulas indicating fat-

tailed and symmetric dependence structure, meanwhile, the unit-unit links at the second level

are of all types: asymmetric and/or fat-tailed, depending on the banks and the time period.

Moreover, if we consider U.S. and European banking systems jointly, the interconnectedness

between the CDS spread log-differences is best captured using the bi-factor copula. This

shows the existence of one common global factor and two regional factors, pointing to the

dominance of the systematic contagion channel. Using the best-fitting copula models we

then forecast a variety of risk measures that capture the individual, joint, and conditional

probabilities of distress. The findings closely coincide with the observed historical data: there

are clear peaks in probabilities of distress during turbulent periods, such as the COVID-19

pandemic, 2022 interest rate hikes, and the 2023 banking panic. Also, the model captures

the increase in the probability of distress for certain banks in the system, such as Credit

Suisse for example.
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Appendix

A Factor copulas and factor-vine copulas

A.1 One-factor copula models

In the one-factor copula model, the variables U1, . . . , Ud are conditionally independent given

the latent variable, V0, as shown in Krupskii and Joe (2013). We have that the conditional

distribution function of Ui given V0 is given by,

FUi|V0(ui|v0;θ0i) =
∂FUi,V0(ui, v0;θ0i)

∂v0
=

∂CUi,V0(ui, v0;θ0i)

∂v0
,

where FUi,V0 is the joint CDF of Ui and V0, and CUi,V0(ui, v0;θ0i) is the bivariate copula

distribution function parameterized by θ0i as the vector of parameters of the bivariate cop-

ula. Then, the conditional copula density and the integrated copula density can be derived

respectively as,

p(u1, . . . , ud|v0;θ) =
∂F (u1, . . . , ud|v0;θ)

∂u1 . . . ∂ud

=
d∏

i=1

∂FUi|V0(ui|v0;θ)
∂ui

=
d∏

i=1

∂CUi,V0(ui, v0;θ)

∂ui∂v0

=
d∏

i=1

cUi,V0(ui, v0;θ0i),

(6)

and,

p(u1, . . . , ud;θ) =

∫ 1

0

p(u1, . . . , ud|v0;θ)dv0 =
∫ 1

0

d∏
i=1

cUi,V0(ui, v0;θ0i)dv0, (7)

where θ = [θ
′

01, . . . ,θ
′

0d]
′
is the vector of copula parameters.

A.2 Two-factor copula models

Similarly, Krupskii and Joe (2013) compute the conditional copula density and the integrated

copula density of the two-factor copula model respectively as,

p (u1, . . . , ud | v0, v1;θ) =
d∏

i=1

p (ui | v0, v1;θ)

=
d∏

i=1

cUi,V1|V0

(
ui|v0 , v1;θ1i

)
cUi,V0 (ui, v0;θ0i) ,

(8)
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and

p (u1, . . . , ud;θ) =

∫ 1

0

∫ 1

0

p (u1, . . . , ud | v0, v1;θ) p(v1)p(v0)dv1dv0, (9)

where ui|v0 = FUi|V0(ui|v0), and θ = [θ
′

01, . . . ,θ
′

0d,θ
′

11, . . . ,θ
′

1d]
′
is the set of copula param-

eters. The joint copula distribution and density require a high dimensional integral which

makes it difficult to consider more than three latent variables, see Joe (2014).

A.3 Structured factor copula models

The nested factor copula model defines a hierarchical dependence structure from a common

root variable. The conditional density function for the nested factor copulas is derived

following Krupskii and Joe (2015),

p(u1, . . . , ud, v1, . . . , vG|v0;θ) = p(u1, . . . , ud|v1, . . . , vG;θ)p(v1, . . . , vG|v0;θ), (10)

where, similar to the one-factor copula, the conditional copula density for the observables is,

p(u1, . . . , ud|v1, . . . , vG;θ) =
G∏

g=1

dg∏
ig=1

cUig ,Vg(uig , vg;θgig),

and for the latent factor is,

p(v1, . . . , vG|v0;θ) =
G∏

g=1

cVg ,V0(vg, v0;θ0g).

where cUig ,Vg(uig , vg;θgig) is the bivariate copula density of Uig and Vg for each group member

ig in group g with dg members, for g = 1, . . . , G; and cVg ,V0(vg, v0;θ0g) is the bivariate copula

density of Vg and V0; and θ = [θ
′

01, . . . ,θ
′

0G,θ
′

11, . . . ,θ
′

GdG
]
′
is the set of copula parameters.

Similar to the two-factor copula, the conditional density function for the bi-factor copula

model is given by,

p(u1, . . . , ud|v0, . . . , vG;θ) =
G∏

g=1

dg∏
ig=1

p(uig |v0, vg;θ)

=
G∏

g=1

dg∏
ig=1

cUig ,Vg |V0(uig |v0 , vg;θgig)cUig ,V0(uig , v0;θ0ig),

(11)

where uig |v0 = FUig |V0(uig |v0) and θ = [θ
′

01, . . . ,θ
′

0d,θ
′

11, . . . ,θ
′

GdG
]
′
is the vector of copula

parameters.
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A.4 Factor-vine copula models

We follow Kurowicka and Cooke (2006), Kurowicka and Cooke (2006), Brechmann et al.

(2012), Krupskii and Joe (2013) to derive the joint density of the truncated factor vine

copula model,

p(v0, u1, . . . , ud;θ) =
K∏
i=0

∏
e(j,k)∈Ei

cj,k|D(e)(uj|D(e), uk|D(e);θ) (12)

where uj|D(e) = FUj |UD(e)
(uj|uD(e)), uk|D(e) = FUk|UD(e)

(uk|uD(e)) and uD(e) is a sub-vector of

u with the conditioning set D(e). The pseudo uj|D(e) can be computed recursively using the

formula derived in Aas et al. (2009). In order to calculate the copula density of observable

variables, one can take the integral of the conditional copula density over the latent space,

p(u1, . . . , ud;θ) =

∫ 1

0

K∏
i=0

∏
e∈Ei

cj,k|D(e)(uj|D(e), uk|D(e);θ)dv0. (13)

For example, the conditional density of a truncated factor-vine copula with two levels can

be derived as

p (u1, . . . , ud | v0;θ) =
∏

e{j,k}∈E1

p
(
uj|v0 , uk|v0 ;θjk

) d∏
i=1

p (ui | v0;θ0i)

=
∏

e{j,k}∈E1

cUj ,Uk|V0

(
uj|v0,t , uk|v0,t ;θjk

) d∏
i=1

cUi,V0 (ui, v0;θ0i) ,

where E1 is the set of edges e(j, k) that connects variable j and variable k at level 2; and

θ = [θ
′

01, . . . ,θ
′

0d,θ
′

jk, ∀e(j, k) ∈ E1]
′
is the vector of copula parameters.
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B Variational Bayes: a schematic representation

Data: Copula data U = {ui} and structured copula model
Result: The bivariate copula types, and its free parameter λ
Initialization λ(0);
while Any change in copula types do

while Change in ELBO is above some threshold do
Draw M samples from the variational distribution q(Θ;λ) ;
Approximate the noisy gradient ∇λELBO ;

Update λ(i+1) ← λ(j) + ϱ(j)∇λELBO where ϱ(j) is the adaptive step size;
Incremental iteration (i) ;

end
Select best bivariate copula ui and v based on BIC ;
Reassign the copulas and estimate ;

end
Return copula structure and the parameters of proposal distribution;

Algorithm 1: Modified of ADVI in (Kucukelbir et al., 2017)

C Connectedness of European and U.S. banks

The co-movements of the CDS spreads can be written as a system of the reduced-form vector

autoregression (VAR):

st = Φ1st−1 + . . .+Φ4st−4 +D
1/2
t ηt,

st = Θ(L)at, where at = D
1/2
t ηt

Θ(L) =
(
I −Φ1L− . . .Φ4L

4
)−1

= Θ0 +Θ1L+Θ2L
2 + . . . ,

(14)

where st = (s1,t, . . . , sd,t)
′
are the CDS log-differences, Φ1, . . .Φ4,D

1/2
t are diagonal matrices

that stack the parameters of the AR(4)-GJR-GARCH(1,1) marginals from Eq.3, and Θh is

the coefficient matrix multiplying the h-lagged shock vector in the infinite MA representation.

Diebold and Yılmaz (2014) consider the connectedness measures as the shares Ht = [ĥt
ij] of

variance decomposition of K-step-ahead errors in forecasting si due to the shocks to sj,

ĥt
ij =

ht
ij

d∑
j=1

ht
ij

with ht
ij =

σ−1
jj,t

K−1∑
k=0

(
e

′

iΘkΣtej

)2
K−1∑
k=0

(
e

′

iΘkΣtΘ
′

kei

) , (15)
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where ej is a d-dimensional vector with the jth element a unity and zeros elsewhere, Σt =

cov(at) and σjj is the j-th diagonal element of Σt.

Using the factor copula models, it is straightforward to simulate the forecast errors and

estimate the connectedness at any given point in time. For illustration purposes, we estimate

bank-wise connectedness at the point near the collapse of several U.S. banks in 2023. Tables 5

presents estimation results for the one-factor copula (systematic contagion channel only), and

Table 6 presents estimation results for the factor-vine copula (systematic and idiosyncratic

contagion channels). The 15 x 15 matrix in the upper left part of the both tables show

the percentage of the changes in CDS spread of bank in row i due to the shocks in bank

in column j. For example, according to the one-factor model (Table 5), 8% of the changes

in the CDS spreads of Barclays bank (BCS) are due to the changes in the CDS spreads of

Credit Suisse (CS) bank (first row, third column).

Table 5: Connectedness of European and U.S. banks using the one-factor copula model.

BCS BNP CS GLE ISP SAN UBS UCG AXP BAC C GS JPM MS WFC From
BCS 12.7 7.7 8.0 7.5 4.6 7.4 6.2 6.2 1.9 7.2 6.9 6.6 7.0 2.7 7.3 87.3
BNP 7.2 12.0 8.2 7.7 4.7 7.4 6.3 6.3 1.9 7.3 7.0 6.7 7.0 2.8 7.4 88.0
CS 7.0 7.7 14.2 7.6 4.6 7.2 6.2 6.1 1.9 7.1 6.9 6.6 6.8 2.8 7.3 85.8

GLE 7.2 7.8 8.2 11.6 4.7 7.4 6.4 6.3 1.9 7.3 7.0 6.8 7.0 2.8 7.5 88.4
ISP 7.3 7.9 8.3 7.8 7.6 7.5 6.4 6.4 2.0 7.4 7.1 6.7 7.1 2.8 7.5 92.4
SAN 7.2 7.8 8.1 7.7 4.7 12.2 6.3 6.3 1.9 7.2 7.0 6.6 7.0 2.8 7.4 87.8
UBS 7.0 7.6 8.0 7.6 4.6 7.2 12.6 6.2 1.9 7.2 6.8 6.5 6.8 2.8 7.3 87.4
UCG 7.3 7.9 8.2 7.8 4.8 7.5 6.4 9.6 1.9 7.4 7.1 6.8 7.1 2.8 7.5 90.4
AXP 7.1 7.7 8.0 7.5 4.6 7.3 6.3 6.2 7.8 7.2 6.8 6.5 6.9 2.8 7.3 92.2
BAC 7.2 7.8 8.0 7.7 4.7 7.3 6.3 6.3 1.9 12.0 7.0 6.7 7.0 2.8 7.4 88.0

C 7.2 7.8 8.2 7.7 4.7 7.4 6.3 6.3 1.9 7.3 10.9 6.8 7.1 2.8 7.5 89.1
GS 6.9 7.5 7.9 7.4 4.5 7.1 6.0 6.0 1.8 7.0 6.8 14.6 6.7 2.7 7.1 85.4

JPM 7.2 7.7 8.0 7.6 4.7 7.4 6.2 6.3 1.9 7.3 7.0 6.6 12.1 2.8 7.3 87.9
MS 7.2 7.8 8.2 7.8 4.7 7.4 6.4 6.3 1.9 7.4 7.0 6.8 7.1 6.6 7.4 93.4

WFC 7.2 7.7 8.1 7.7 4.7 7.4 6.3 6.2 1.9 7.2 7.0 6.7 6.9 2.8 12.2 87.8
To 100.3 108.3 113.3 107.1 65.3 102.9 88.0 87.5 26.7 101.5 97.5 93.3 97.5 38.9 103.1 88.8
Net 13.0 20.3 27.5 18.6 -27.0 15.1 0.6 -2.9 -65.5 13.5 8.4 8.0 9.6 -54.5 15.2

Notes: Connectedness of European and U.S. banks using the one-factor copula model on March 16th, 2023. The 15 x 15 elements in the upper

left show the shares Ht = [ĥt
ij ] of variance decomposition of 5-step-ahead error in forecasting si due to the shocks to sj . ‘From’ column reports

total directional connectedness from all others to bank i and ‘To’ row reports total directional connectedness from bank j to all others. And ‘Net’

row reports the difference in total directional connectedness ‘To’–‘From’. The lower right number reports the average total connectedness.
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Table 6: Connectedness of European and U.S. banks using the factor-vine copula model.

BCS BNP CS GLE ISP SAN UBS UCG AXP BAC C GS JPM MS WFC From
BCS 15.2 8.5 7.6 9.4 3.7 7.3 5.1 5.2 1.8 7.1 6.7 6.3 6.7 2.5 6.9 84.8
BNP 7.4 13.3 8.3 10.6 3.8 7.7 5.4 5.4 1.8 7.1 6.7 6.3 6.8 2.5 6.9 86.7
CS 6.4 8.0 15.8 8.9 3.6 7.1 8.8 5.1 1.7 6.8 6.4 6.0 6.4 2.4 6.6 84.2

GLE 8.1 10.6 9.1 12.3 4.0 8.6 5.7 5.8 1.7 6.7 6.3 5.9 6.4 2.4 6.5 87.7
ISP 5.8 6.9 6.8 7.3 9.1 9.1 4.8 9.9 1.9 7.5 7.0 6.7 7.2 2.7 7.3 90.9
SAN 6.6 8.1 7.7 9.0 5.2 13.4 5.1 7.8 1.7 6.9 6.5 6.1 6.6 2.5 6.8 86.6
UBS 5.8 7.0 11.7 7.4 3.4 6.3 14.8 4.8 1.8 7.2 6.8 6.3 6.9 2.6 7.0 85.2
UCG 6.0 7.2 7.0 7.7 7.3 9.9 4.9 11.1 1.8 7.3 6.8 6.5 7.0 2.6 7.1 88.9
AXP 5.7 6.5 6.4 6.2 3.8 6.1 5.1 5.1 7.9 9.2 8.6 8.3 8.8 3.3 9.0 92.1
BAC 5.8 6.7 6.6 6.3 3.9 6.2 5.2 5.2 2.4 12.0 9.2 8.6 9.2 3.4 9.4 88.0

C 5.8 6.7 6.6 6.3 3.9 6.2 5.3 5.1 2.4 9.8 11.0 8.6 9.3 3.5 9.5 89.0
GS 5.5 6.4 6.3 6.0 3.8 5.9 5.0 5.0 2.3 9.3 8.7 14.8 8.8 3.3 9.0 85.2

JPM 5.8 6.7 6.5 6.3 3.9 6.2 5.3 5.2 2.4 9.6 9.1 8.5 11.9 3.4 9.3 88.1
MS 5.7 6.6 6.5 6.2 3.9 6.2 5.2 5.2 2.4 9.4 9.1 8.4 9.0 6.9 9.3 93.1

WFC 5.8 6.6 6.6 6.3 3.9 6.2 5.2 5.2 2.4 9.6 9.1 8.5 9.1 3.4 12.3 87.7
To 86.3 102.4 103.7 103.9 58.1 98.9 76.3 79.8 28.4 113.7 106.8 101.0 108.1 40.3 110.6 87.9
Net 1.5 15.7 19.4 16.2 -32.7 12.4 -8.9 -9.1 -63.7 25.7 17.8 15.8 20.0 -52.8 22.8

Notes: Connectedness of European and U.S. banks using the factor-vine copula model on March 16th, 2023. The 15 x 15 elements in the upper

left show the shares Ht = [ĥt
ij ] of variance decomposition of 5-step-ahead error in forecasting si due to the shocks to sj . ‘From’ column reports total

directional connectedness from all others to bank i and ‘To’ row reports total directional connectedness from bank j to all others. And ‘Net’ row

reports the difference in total directional connectedness ‘To’–‘From’. The lower right number reports the average total connectedness.
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