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Abstract

Stock and oil relationship is usually time-varying and depends on the current economic

conditions. In this study, we propose a new Dynamic Stochastic Mixed data sampling (DSM)

copula model, that decomposes the stock-oil relationship into a short-run dynamic stochastic

component and a long-run component, governed by related macro-finance variables. Inference

and prediction is carried out using a novel Bayesian estimation strategy, that can efficiently

estimate the latent states and delivers an estimate of the log marginal likelihood used for model

comparison. We find that inflation/interest rate, uncertainty and liquidity factors are the main

drivers of the long-run co-dependence. We show that the multi-step-ahead variance covariance

forecasts constructed using the proposed approach are closer to the true values as compared to

the benchmark model. Finally, investment portfolios, based on the proposed DSM copula model,

are more accurate and produce better economic outcomes as compared to other alternatives.
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A Copulas

Here we summarize the CDFs, PDFs and the relationship between the copula-specific parameter

θ and the Kendall’s tau τκ for the bivariate Gaussian, Student-t, Clayton, Gumbel, Frank and Joe

copulas (Joe, 2015).

Bivariate Gaussian copula:

Let x = Φ−1(u) and y = Φ−1(v), where Φ−1 is the inverse of the univariate standard normal

distribution function. The bivariate Gaussian copula CDF and PDF are given by:

C(u, v; θ) = Φ2 (x, y; θ) , 0 < u, v < 1, θ ∈ [−1, 1],

c(u, v; θ) =
φ2

(
Φ−1(u),Φ−1(v); θ

)
φ (Φ−1(u)) · φ (Φ−1(v))

= (1− θ2)−1/2 exp

{
2θxy − θ2(x2 + y2)

2(1− θ2)

}
,

where Φ2(·; θ) is the standard bivariate normal distribution function with correlation coefficient θ.

The relationship between Kendall’s tau and copula parameter is given by:

τκ = 2 arcsin(θ)/π, θ = sin(πτκ/2).

Bivariate t copula:

Let x = T−1
ν (u) and y = T−1

ν (v), where T−1
ν is the inverse of the univariate t-distribution function

with ν degrees of freedom. The bivariate t copula CDF and PDF are given by:

C(u, v; θ, ν) = T2,ν(x, y; θ), 0 < u, v < 1, θ ∈ [−1, 1],

c(u, v; θ, ν) =
t2,ν(x, y; θ)

tν(x) · tν(y)
=

1√
1− θ2

Γ((ν + 2)/2)Γ(ν/2)

Γ2((ν + 1)/2)

(
1 + x2+y2−2θxy

ν(1−θ2)

)−(ν+2)/2

(
1 + x2

ν

)−(ν+1)/2 (
1 + y2

ν

)−(ν+1)/2
,

where T2,ν(·; θ) is the bivariate t distribution function with correlation coefficient θ and degrees of

freedom parameter ν. The relationship between Kendall’s tau and copula parameter is the same

as in Gaussian copula and is given by:

τκ = 2 arcsin(θ)/π, θ = sin(πτκ/2).

Bivariate Clayton copula:

The CDF and PDF for Clayton copula are given by:

C(u, v; θ) =
(
u−θ + v−θ − 1

)−1/θ
, 0 ≤ u, v ≤ 1, 0 ≤ θ <∞,
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c(u, v; θ) = (1 + θ)[uv]−θ−1
(
u−θ + v−θ − 1

)−2−1/θ
.

The relationship between Kendall’s tau and copula parameter is given by:

τκ =
θ

θ + 2
, θ =

2τκ
1− τκ

.

Bivariate Gumbel copula:

Let x = − log u and y = − log v. The CDF and PDF are given by:

C(u, v; θ) = exp

{
−
(
xθ + yθ

)1/θ
}
, 0 ≤ u, v ≤ 1, 1 ≤ θ <∞,

c(u, v; θ) = (uv)−1 · exp
{
−[xθ + yθ]1/θ

}[
(xθ + yθ)1/θ + θ − 1

] [
xθ + yθ

]1/θ−2
(xy)θ−1.

The relationship between Kendall’s tau and copula parameter is given by:

τκ =
θ − 1

θ
, θ =

1

1− τκ
.

Bivariate Frank copula:

The CDF and PDF are given by:

C(u, v; θ) = −θ−1 log

(
1− e−θ − (1− e−θu)(1− e−θv)

1− e−θ

)
, 0 ≤ u, v ≤ 1, −∞ < θ <∞,

c(u, v; θ) =
θ(1− e−θ)e−θ(u+v)

[1− e−θ − (1− e−θu)(1− e−θv)]2
.

The relationship between Kendall’s tau and copula parameter is given by:

τκ = 1 + 4θ−1

[
θ−1

∫ θ

0

t

(et − 1)
dt− 1

]
.

Bivariate Joe copula:

Let x = 1− u and y = 1− v. The CDF is given by:

C(u, v; θ) = 1−
(
xθ + yθ − xθyθ

)1/θ
, 0 ≤ u, v ≤ 1, 1 ≤ θ <∞,

c(u, v; θ) = (xθ + yθ − xθyθ)−2+1/θxθ−1yθ−1[θ − 1 + xθ + yθ − xθyθ].
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The relationship between Kendall’s tau and copula parameter is given by:

τκ = 1 + 2(2− θ)−1[digamma(2)− digamma(2/θ + 1)]

There is no closed form expression between θ and τκ (numerical inversion).

Rotation of Bivariate Archimedian copulas

The CDF, PDF of the 90-degree, 180-degree, 270 degree rotation of Clayton, Gumbel, and Joe

copula model can be derived from its CDF and PDF,

C90(u, v; θ) = v − C(1− u, v;−θ),

C180(u, v; θ) = u+ v − 1 + C(1− u, 1− v; θ),

C270(u, v; θ) = u− C(u, 1− v;−θ),

c90(u, v; θ) = c(1− u, v;−θ),

c180(u, v; θ) = c(1− u, 1− v; θ),

c270(u, v; θ) = c(u, 1− v;−θ).
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B DTSMC algorithm

1. Sample Θj
0 ∼ p(Θ), ej0 ∼ p(e) and set W j

0 = 1/M for j = 1...M with M = 1000 particles
2. For i = 1, ..., S, with S = 10000 level temperatures,

Step 1: Reweighting: Calculate the unnormalized weights and the normalized weights

wji = W j
i−1

p̂(u1:T |Θj
i−1, e

j
i−1)γip(Θj

i−1)

p̂(u1:T |Θj
i−1, e

j
i−1)γi−1p(Θj

i−1)
= W j

i−1p̂(u1:T |Θ
j
i−1, e

j
i−1)γi−γi−1 , j = 1, ...,M,

W j
i =

wji∑M
s=1 w

s
i

, j = 1, ...,M.

Step 2: Calculate the effective sample size (ESS): ESS = 1∑M
j=1(W

j
i )

2 .

if ESS < cM for c = 0.8

(i) Resampling: Resampling from {Θj
i−1, e

j
i−1}Mj=1 using the weights {W j

i }Mj=1, and then set

W j
i = 1/M for j = 1...M , to obtain the new equally-weighted particles {Θj

i , e
j
i ,W

j
i }Mj=1.

(ii) Markov move: Parallel for each j = 1, ...,M , move the samples Θj
i , e

j
i for Q = 10 CPM

steps (Deligiannidis et al., 2018):

(a) Sample Θj∗
i from the random walk proposal density q(Θj∗

i |Θ
j
i ).

(b) Sample εj ∼ N(0, I) and set ej∗i = ρeji +
√

1− ρ2εj with ρ = 0.999 is a correlation
factor.

(c) Compute the estimated likelihood p̂(u1:T |Θj∗
i , e

j∗
i ) using a bootstrap particle filter

(d) Set Θj
i = Θj∗

i and eji = ej∗i with the probability

min

(
1,
p̂(u1:T |Θj∗

i , e
j∗
i )γip(Θj∗

i )

p̂(u1:T |Θj
i , e

j
i )
γip(Θj

i )

q(Θj
i |Θ

j∗
i )

q(Θj∗
i |θ

j
i )

)
,

otherwise keep Θj
i , e

j
i unchanged.

3. The log of marginal likelihood estimate is

logp̂(u1:T ) =

K∑
i=1

log

 M∑
j=1

wji

 .

Algorithm 1: The DTSMC algorithm
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C A DCC MIDAS Gaussian copula model

Colacito et al. (2011) and Conrad et al. (2014) extend the DCC model (Engle, 2002) such that

there are N variables that can explain the long-term dependence. A DCC MIDAS Gaussian copula

model can be presented as,

(u1t, u2t) ∼ c(Gauss)(u1t, u2t|Rt),

Rt = Q
∗−1/2
t QtQ

∗−1/2
t where Q∗t = diag(Qt)

q12,t+1 = q12,τ (1− α− β) + αΦ−1(u1t)Φ
−1(u2t) + βq12,t,

q12,τ = λ0 +

N∑
j=1

δj

 Kj∑
k=1

φk(ωj,1, ωj,2)Xj,τ−k

 ,
(1)

where (λ0, α, β, δj , ωj) are the fixed copula parameters and τ = bt/Lc. (X1τ , . . . , XNτ ) are N -

dimensional vector of low-frequency variables, and φk(ωj1, ωj2) is the weighting scheme of the

variable j on its k lag, for k = 1, . . . ,K. The weighting scheme of each variable j depends on the

regulated parameter ωj for j = 1, . . . , N . Note that 0 < α+ β < 1.

D Simulation study

In this section, we compare the proposed DSM copula models with the Exponentially Weighted

Moving Average (EWMA), the Dynamic Conditional Correlation (DCC) model (Engle, 2002; Tse

and Tsui, 2002), and the DSC when the true correlation structure is known, in different stress

scenarios based on the proposal of Engle (2002) and (Hafner and Manner, 2012). We simulate

T = 2000 observations from a bivariate Gaussian copula with time-varying correlation parameter

ρt. We consider five models for the behavior of ρt such that,

1. Constant: ρt = 0.8.

2. Sine: ρt = 0.5cos(2πt/250).

3. Fast Sine: ρt = 0.5cos(2πt/25).

4. Step: ρt = 0.5− I(t > 1000).

5. Ramp: ρt = ((t mod 200)− 100)/101.

Engle (2002) considers that these stress tests mimic different realistic contexts that the correlation

can be constant, gradual changes, rapid changes, and abrupt changes. We generate 100 datasets

for each stress test and obtain the estimate of the correlation process ρ̂t. We calculate the 22-day

realized correlation (RCor) as a low-frequency explanatory variable for the long-run change in the
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correlation. We measure the accuracy of each model based on the mean absolute error (MAE) and

the mean-squared error (MSE),

MAE =
1

T

T∑
t=1

|ρ̂t − ρt|,

MSE =
1

T

T∑
t=1

(ρ̂t − ρt)2.

Table 1 compares the relative MAE and MSE of the estimation of the correlation using the

EWMA, the DSC, the DSM copula over the benchmark DCC model. With the exception of

constant correlation scenarios, the DSM copula has a smallest MAE and MSE due to the ability

of capturing the long-run dependence. We also observe that when the correlation changes quickly

which makes it hard to extract the long run signal, the DSM copula model is still on par with the

DSC model. The choice of lag number of the explanatory variable is also robust to the estimation

results.

Table 1: MAE and MSE results: a simulation study

Constant Sine Fast sine Step Ramp

(a) MAE
EWMA 5.316 1.184 1.191 1.000 1.364
DCC 1.000 1.000 1.000 1.000 1.000
DSC 0.796 0.970 0.924 0.980 0.951
DSM 0.902 0.829 0.924 0.875 0.925

(b) MSE
EWMA 27.679 1.345 1.422 0.864 1.915
DCC 1.000 1.000 1.000 1.000 1.000
DSC 0.618 0.942 0.902 1.006 0.944
DSM 0.798 0.691 0.906 0.855 0.880

The table shows the relative MAE and MSE of the estimation of the correlation

using the EWMA, the DSC, the DSM copula over the benchmark DCC model. We

use the restricted beta weighting function and K = 12 lags of monthly RCor as a

low-frequency explanatory variable for the long-run change in the correlation. We

generate 100 pseudo datasets for each stress test and calculate the average of MAE

and MSE. The entries less than 1 indicate that the given model is better.
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E Data description

The daily prices, log returns and monthly correlations for both assets are shown in Figure 1.

Shaded areas are the National Bureau of Economic Research (NBER) based recession indicators:

early 1990s and 2000s recessions, the global financial crisis of 2008 and the Covid pandemic. As

seen from the top right and middle right plots, both asset returns present increased volatility during

crisis episodes, which is in line with a well-documented stylized features of financial returns. The

bottom plot draws the monthly stock-oil correlation, calculated as a 22-day sample correlation

at the end of each period. Just by eye-balling the plot, it seems that the correlation presents a

rather mixed picture: sharp decrease during the early 1990s recession, virtually unchanged level

during the early 2000s, significant jump-type change in the level during the global financial crisis

and rather inconclusive change in the co-dependence during the Covid pandemic. Contrary to

the “conventional” asset returns, whose co-dependence increases during economic turmoils and

decreases during the periods of calm economic conditions, the stock-oil relationship seems much

more complex and possibly driven by a multitude of external factors.

Table 2 presents the descriptive statistics for S&P 500 and WTI returns. Both assets’ returns are

negatively skewed, have large kurtosis, and present autocorrelation in squared returns, indicating

the presence of ARCH effects. The average of daily stock returns is higher than oil returns while oil

returns are more volatile and skewed. This could be due to the mismatch of oil supply and demand.

Following Hong et al. (2007), the test statistics for the symmetric exceedance correlation between

(III-I) quadrants and between (II-IV) quadrants show no statistical evidence of asymmetric tail

dependence between S&P 500 and WTI log returns.

Table 2: Descriptive statistics for S&P 500 and WTI log returns.

(a) Summary statistics of S&P 500 and WTI log returns (01/01/1990 - 31/12/2021)

mean Q2 sd skew kurtosis min max LB(10) ARCH(10) JB n

S&P 500 0.03 0.06 1.14 -0.41 14.39 -12.77 10.96 0.00 0.00 0.00 8059
WTI 0.01 0.05 2.65 -1.87 54.26 -60.17 31.96 0.00 0.00 0.00 8059

(b) Tests for exceedance correlations symmetry of daily log return data in subperiods

Period ρ̄ ρIII0.05 ρI0.05 Test (III - I) P.val ρII0.05 ρIV0.05 Test (II - IV) P.val

1990 - 1999 -0.12 0.224 0.468 0.388 0.533 -0.167 -0.581 0.605 0.437
2000 - 2009 0.129 0.224 -0.194 2.974 0.085 -0.139 -0.422 0.886 0.347
2010 - 2021 0.317 0.105 0.057 0.149 0.700 0.442 -0.098 1.788 0.181
1990 - 2021 0.143 0.098 -0.019 1.091 0.296 -0.024 -0.222 1.153 0.283

Panel (a) reports the descriptive statistics for daily log return data (in %) from 01/01/1990 to 31/12/2021. The LB(k) reports the p-value for
the Ljung-Box test for autocorrelation of k lags, and ARCH(l) reports the p-value for the test for ARCH effects with l lags. The JB reports the
p-value for the Jarque-Bera test for Normality.

Panel (b) reports the Pearson correlation of daily log return data in subperiods. The 5% exceedance correlations at different quadrants are denoted

by ρI0.05, ρ
II
0.05, ρ

III
0.05, ρ

IV
0.05. The test statistics for the symmetric exceedence correlation between (III-I) quadrants and between (II-IV) quadrants

are calculated following Hong et al. (2007). ***,**,* denote significant at 1%, 5%, 10% level.
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Figure 1: Daily prices, log returns and monthly correlations for S&P 500 and WTI.
The plots show the daily S&P 500 index and returns and the daily WTI oil prices and returns during the period from 01/01/1990

to 31/12/2021. The S&P 500 returns (WTI oil returns) are calculated as the log difference of the S&P 500 index (WTI oil

price) multiplied by 100. Monthly correlation is calculated as a 22-day sample correlation at the end of each period. The shaded

areas highlight the recession periods based on the NBER recession indicators.

9



F Marginals

The log returns for asset i = {1 for S&P 500, 2 for WTI} can be decomposed into time-invariant

mean component and a heteroscedastic error term ri,t − µi ≡ εi,t = εi,t
√
σ2
i,t. Here εi,t follows a

skew-t distribution with skew and shape parameters (ξi, νi) (Fernández and Steel, 1998; Ferreira

and Steel, 2006). The GJR-GARCH model is defined as follows:

σ2
i,t = ωi + (αi + γiIi,t−1)ε2

i,t−1 + βiσ
2
i,t−1,

where the indicator function Ii,t takes value of 1 if εi,t ≤ 0 and 0 otherwise; and (ωi, αi, βi, γi)

are the parameters of the marginal returns where γi represents the leverage effect. The models

were estimated using the R package rugarch (Ghalanos, 2022). Estimation results are in Table

3. For both assets the persistence parameter βi takes a value close to one, a finding consistent

with the stylized features of financial volatility. The leverage parameter γi is larger for S&P 500

than for WTI indicating a stronger asymmetric response of the volatility, and both parameters

are statistically significant. The degrees of freedom parameter νi is relatively low in both cases,

indicating fat-tailed distribution. Table 4 presents the descriptive statistics for the residuals of

the GJR-GARCH skew-t model. According to Ljung-Box and ARCH tests, there is no leftover

autocorrelation in the mean or squared residuals. The p-values of the Kolmogorov-Smirnov (KS)

and Anderson-Darling (AD) tests for skew-t distribution with the estimated (ξ, ν) parameter values

do not reject the null hypothesis, indicating the appropriateness of the distributional assumption.

Finally, the Data Driven Smooth (DD) test for Uniformity, which checks whether the probability

integral transforms of the residuals are uniformly distributed, does not reject the null either. In

other words, the marginals have been modeled correctly and the resulting uniformly distributed

data can be used in the copula estimation step.

Table 3: Estimation results for the marginals.

µi ωi αi βi γi ξi νi
S&P 500 0.029 0.017 0.002 0.894 0.18 0.893 7.052

(0.008) (0.003) (0.008) (0.012) (0.021) (0.013) (0.568)
WTI 0.012 0.064 0.051 0.918 0.04 0.922 6.284

(0.021) (0.027) (0.013) (0.018) (0.013) (0.014) (0.494)

Estimated parameters and standard errors (in parenthesis) for the GJR-GARCH model with

skew-t errors for S&P 500 and WTI data.
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Table 4: Descriptive statistics for GJR-GARCH model residuals.

mean Q2 sd skew kurtosis min max LB(10) ARCH(10) KS AD DD

S&P 500 0.00 0.04 1.00 -0.57 5.42 -7.17 6.22 0.07 0.71 0.09 0.12 0.97
WTI 0.00 0.02 1.01 -0.42 6.22 -8.63 6.22 0.56 0.29 0.57 0.69 0.95

Descriptive statistics for GJR-GARCH skew-t model residuals. The LB(k) reports the p-value for the Ljung-Box test for

autocorrelation of k lags, and ARCH(l) reports the p-value for the test for ARCH effects with l lags. KS and AD are the

p-values for Kolmogorov-Smirnov and Anderson-Darling tests for skew-t distribution. Finally, DD is the p-value for the Data

Driven Smooth test for Uniformity that checks whether the probability integral transforms of the residuals are uniformly

distributed.

G Robustness checks

This section contains the results of the numerous robustness checks. In particular, we consider

two extensions of the DSC-t copula model, namely, a mixture of t copulas, as well as time-varying

degrees of freedom parameter. We also include two replications of the Empirical Illustration Section

considering five different data sets, and also alternative factor identification strategies.

Mixture of student copulas

The proposed copulas in Section 2.2 of the main manuscript can only capture the symmetric positive

or negative dependence at a point in time using the elliptical copulas or equally-weighted rotations

of Archimedean copulas. To overcome this shortcoming, the weight of mixture copulas can also be

estimated as a parameter in the model. In line with Loaiza-Maya et al. (2018), we investigate the

performance of a five-parameter mixture Student-t copula, defined below, as it can provide insights

into both directional dependence and asymmetry.

(u1,t, u2,t) ∼cMIX(u1,t, u2,t;w, θ1t, ν1, θ2t, ν2),

cMIX(u1,t, u2,t;w, θ1t, ν1, θ2t, ν2) =wcT (u1,t, u2,t; θ1t, ν1)+

(1− w)cT (1− u1,t, u2,t; θ2t, ν2)

θit =Λ(λit) > 0, for i = 1, 2,

λit =λi0(1− β) + βλi,t−1 + σeet, eit ∼ N(0, 1).

(2)

In this mixture, the weighting constant w is a parameter itself and the copula decides the direction

of the asymmetry and fat-tailedness. Note that the correlation parameter θ is restricted to be

positive for identification purposes. For w > 0 at any time point, the first mixture component

captures positive dependence, meanwhile, the second component is a corresponding survival copula

and captures a negative dependence structure. We fit the mixture copula to our data used in the

main manuscript, the estimation results are in Table 5. We find that almost all weight is assigned to

the first component, indicating the predominantly positive dependence structure between stock-oil

log returns. The value of the log marginal likelihood is smaller as compared to the less complex DSC

model with t copula. This can happen as a result of the smooth changes of the stock-oil dependence
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from positive to negative and vice versa, while the mixture copulas in Loaiza-Maya et al. (2018)

aims to model abrupt changes at any time that are suitable for the temporal dependence of the

return series.

Time varying degrees of freedom Student copulas

The average estimated degrees of freedom parameter in the DSC-t model is 17, with 10-90% credible

intervals between 13 and 22. Nonetheless, it is likely that for most of the time points the stock-oil

co-dependence has low tail dependence, and then in a particular stretch of time, such as crisis

periods, for example, the dependence becomes high. Therefore, we wish to investigate whether the

degrees of freedom parameter varies over time, as in Hansen (1994); Brooks et al. (2005); Creal

et al. (2008), for example. We define a random walk process for the degrees of freedom parameter

ν,

(u1,t, u2,t) ∼ c(u1,t, u2,t; θt, νt),

θt = Λ(λt),

λt = λ0(1− β) + βλt−1 + σeet, et ∼ N(0, 1),

νt = νt−1 + σνηt, ηt ∼ N(0, 1).

(3)

We fit the DSC-t model with the time-varying degrees of freedom to our data used in the main

manuscript, and, as seen from Table 5, the value of the log marginal likelihood is the same as in

the DSC-t model with static degrees of freedom parameter. Note that the estimated parameter

ν1 is the initial value of the random walk process. The left panel of Figure 2 draws the filtered

path of the parameter νt with 10-90% credible intervals in blue. We see that even though the

parameter fluctuates over time, the changes are not dramatic, i.e. the evidence obtained from the

data supports smooth and stable evolution of the degrees of freedom parameter. The overall level is

almost always above 20, a finding in line with the estimated static ν in the DSC model. The right

panel of Figure 2 draws a histogram of the average ν values at each time t. We can observe that

there are some periods with lower degrees of freedom values (the long left tail), with the majority

of values being around 25, indicating almost normal tails.

Table 5: Estimation results for the DSC model, a mixture of Student copulas, and DSC model with
time-varying degrees of freedom.

θ01 θ02 β σe σν (or w) ν1 ν2 LML

DSC Student 0.184 0.997 0.027 17.278 253.042
(0.082;0.289) (0.995;0.999) (0.021;0.035) (13.176;21.928)

DSC MIX Student 0.050 0.220 0.999 0.101 0.998 18.306 8.856 246.319
(0.009;0.120) (0.020;0.607) (0.999;1.000) (0.076;0.127) (0.994;1.000) (13.631;23.462) (2.809;18.588)

DSC TVP Student 0.178 0.996 0.032 0.065 16.842 253.337
(0.099;0.257) (0.994;0.998) (0.024;0.040) (0.015;0.165) (7.280;28.379)

The table reports the estimation results for the DSC model with Student copulas. The numbers in the brackets show the [10% - 90%] credible intervals. We report the

θ0 equivalent value of λ0 for ease of comparison. The fifth column of the table reports the weight in the DSC MIX Student copula model and the variance parameter of

the random walk process in the time-varying Student copula model.
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Figure 2: Time varying degrees of freedom parameter estimated from DSC Student copula model.
The left panel shows the time varying degrees of freedom parameter estimated from DSC Student copula model with the 80%

credible intervals during the period from 01/01/1990 to 31/12/2021. The right panel plot shows the density of its posterior

means.

Stock-oil co-dependence for different sectors

As the Energy sector forms up to 5.1% of the S&P 500 index according to the www.spglobal.com,

we perform a robustness study where we investigate the stock-oil relationship not on the S&P

500 as a whole, but using the five largest sectors in the S&P 500 such as Information Technology

(S5INFT), Health Care (S5HLTH), Consumer Discretionary (S5COND), Communication Service

(S5TELS), Financials (S5FINL). Note that we employ same the liquidity factor as for stock-oil

returns in the main manuscript, as it is a proxy for the overall liquidity in the financial markets.

Table 6 shows that the sign effects of the macro are consistent regardless of sector returns. Hence

we can conclude that inflation/interest rate, uncertainty and liquidity factors are the main drivers

of the long-run co-dependence between stock and oil returns.

Alternative factor identification

As a robustness check, we have considered an alternative approach, a purely-statistical one, for

factor identification. In particular, we have analyzed all macroeconomic/financial variables at

once and performed the PC analysis, where, using the screeplot, we have identified three principal

components. Then, we have implemented the varimax and promax rotations with the goal of

assigning one variable at most one factor, see Table 7 for the results. In both rotations, we can

see that the varimax and promax variable assignments are strikingly similar to the ones obtained

using economic reasoning.

The first PC represents the state of the economy in a wide sense, since, as opposed to the

“original” factors, the first PC also contains the interest rate and spread. However, the direction

of the effect is not so clear, as the first PC is negatively related to positive economic indicators,

such as IP, CEAI and NAI, and at the same time the sign of the interest rate and spread are the

opposite of what we would expect if the first PC was just a ”negative economic indicator”. Next,

13
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Table 6: Estimation results for the DSM copula model with one macro-finance factor for different
sectors in S&P 500 from 01/01/1990 till 31/12/2021 (n = 8059).

λ0 β σ2
e δ ω2 ν LML

(a) S5INFT - S&P 500 Information Technology
DSM INR 0.161 0.994 0.033 -0.101 16.348 22.339 156.049

(0.071;0.245) (0.991;0.997) (0.023;0.044) (-0.193;0.001) (4.951;27.458) (16.121;30.110)
DSM UNC 0.158 0.989 0.040 0.207 14.264 22.097 159.706

(0.098;0.216) (0.982;0.995) (0.024;0.055) (0.149;0.265) (2.123;26.900) (15.576;30.235)
DSM LIQ 0.067 0.996 0.029 0.082 14.381 22.137 157.911

(-0.072;0.220) (0.994;0.998) (0.022;0.038) (0.006;0.155) (4.134;25.558) (15.596;29.503)
DSM SOE 0.180 0.998 0.023 0.030 14.389 19.047 159.261

(0.005;0.350) (0.997;0.999) (0.017;0.031) (-0.133;0.205) (3.919;25.316) (14.260;24.959)

(b) S5HLTH - S&P 500 Health Care
DSM INR 0.060 0.992 0.038 -0.123 19.354 30.582 110.396

(-0.008;0.127) (0.987;0.995) (0.029;0.048) (-0.187;-0.060) (8.077;28.739) (20.016;44.425)
DSM UNC 0.085 0.974 0.059 0.246 2.186 31.592 116.689

(0.045;0.125) (0.959;0.986) (0.040;0.079) (0.195;0.296) (1.083;3.038) (20.608;44.612)
DSM LIQ 0.046 0.989 0.049 0.081 14.400 33.138 107.475

(-0.024;0.112) (0.984;0.993) (0.039;0.060) (0.026;0.133) (2.877;26.651) (21.251;47.563)
DSM SOE 0.054 0.991 0.041 -0.044 11.750 27.680 107.846

(-0.026;0.124) (0.985;0.996) (0.031;0.053) (-0.128;0.040) (1.470;26.404) (18.623;39.636)

(c) S5COND - S&P 500 Consumer Discretionary
DSM INR 0.090 0.987 0.052 -0.146 14.577 19.918 163.372

(0.019;0.157) (0.980;0.994) (0.037;0.069) (-0.205;-0.087) (3.985;27.916) (14.235;26.693)
DSM UNC 0.118 0.984 0.049 0.259 3.606 19.113 171.239

(0.065;0.169) (0.973;0.993) (0.033;0.067) (0.198;0.322) (1.331;6.545) (14.105;25.008)
DSM LIQ 0.103 0.991 0.046 0.090 14.847 20.274 161.900

(0.022;0.187) (0.985;0.997) (0.029;0.063) (0.015;0.163) (3.695;27.252) (14.015;28.065)
DSM SOE 0.121 0.986 0.057 -0.079 8.912 21.579 163.431

(0.055;0.187) (0.980;0.992) (0.043;0.072) (-0.142;-0.020) (1.300;23.622) (15.273;29.875)

(d) S5TELS - S&P 500 Communication Services
DSM INR 0.072 0.991 0.032 -0.096 15.959 23.502 80.251

(0.017;0.126) (0.987;0.994) (0.025;0.040) (-0.146;-0.048) (5.345;26.326) (16.440;31.918)
DSM UNC 0.071 0.989 0.027 0.153 18.061 22.057 88.113

(0.025;0.115) (0.982;0.995) (0.017;0.039) (0.117;0.189) (6.082;27.923) (16.059;30.487)
DSM LIQ 0.066 0.992 0.028 0.089 12.033 19.170 80.387

(0.016;0.112) (0.989;0.995) (0.020;0.037) (0.052;0.127) (2.058;24.586) (14.249;25.083)
DSM SOE 0.129 0.995 0.029 -0.053 10.670 21.282 73.777

(0.027;0.241) (0.991;0.998) (0.020;0.038) (-0.158;0.074) (1.486;24.290) (14.972;28.609)

(e) S5FINL - S&P 500 Financials
DSM INR 0.144 0.996 0.025 -0.091 11.530 17.336 202.451

(0.062;0.226) (0.995;0.998) (0.020;0.031) (-0.168;-0.016) (2.136;23.588) (13.292;21.941)
DSM UNC 0.136 0.988 0.041 0.264 4.321 20.955 203.237

(0.082;0.187) (0.982;0.993) (0.030;0.052) (0.207;0.323) (1.388;10.629) (14.786;28.049)
DSM LIQ 0.033 0.996 0.028 0.140 12.937 18.756 196.076

(-0.041;0.169) (0.994;0.998) (0.022;0.036) (0.051;0.193) (2.967;24.077) (13.932;24.464)
DSM SOE 0.149 0.995 0.034 -0.067 14.398 19.661 193.276

(0.026;0.285) (0.993;0.998) (0.027;0.043) (-0.148;0.016) (3.420;26.911) (14.611;25.861)

The table reports the estimation results of the DSM copula model (with t copula). The long term dependence component is modelled using one

explanatory variable with the restricted beta weighting function. The selected lag length in the weighting function is such that the maximum

likelihood becomes insensitive to the its choice (K = 24). The numbers in the brackets show the [10% - 90%] credible intervals.
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Table 7: Varimax and promax rotations for PCA on all variables with 3 principal components.

Varimax Promax
PC1 PC2 PC3 PC1 PC2 PC3

INF -0.26 -0.25
IR EFFR -0.29 -0.32 -0.29 -0.32
T10Y3M 0.35 0.35 0.14

EPU 0.28 -0.31 0.29 -0.26
EMV -0.28 0.11 -0.26
NFCIm 0.15 -0.34 0.16 -0.12 -0.31

LIXm wti 0.11 0.42 0.10 0.42
Amihm wti -0.31 -0.31
Amivm wti 0.30 0.30
LIXm sp500 0.44 0.12 0.45 0.10
Amihm sp500 -0.47 -0.47
Amivm sp500 0.17 0.17

IPa -0.44 -0.44
CEAIa -0.41 -0.41
NAIa -0.48 -0.49
CCI 0.46 0.47
BCI 0.20 0.44 0.19 0.48
CLI 0.13 0.51 0.11 0.53

the second principal component is mostly related to the liquidity measures, and its interpretation,

in this case, is pretty straightforward: larger values of this PC indicate larger liquidity. This factor

also contains the inflation and interest rate, both with negative signs, an indication of favorable

economic/financial conditions. Finally, the third principal component could be regarded as the

(un)certainty factor. It is negatively related to the three uncertainty measures, such as EPU, EMV

and NFCI and positively related to the three confidence indices, which represent the opposite of

uncertainty. Table 8 presents the correlations between all individual variables and the PCs obtained

from the varimax rotation.

After we have constructed the principal components based on the varimax rotations, we have

re-estimated the DSM copula model using the three factors. Table 9 reports the estimation results.

The top panel contains the results for the three factors as a single explanatory variable, meanwhile,

the bottom panel contains results for realized correlation-factor pairings. As seen from the table

(both panels), the first PC has a positive and statistically significant effect on the stock-oil co-

dependence. However, the economic interpretation is not so straightforward, as the economic

meaning of the first factor seems rather ambiguous. The second factor represents (mostly) liquidity,

and its effect on the co-dependence is positive yet insignificant, same as the liquidity factor in the

main empirical application. Finally, the third factor could be seen as the certainty indicator, and it

has a negative and statistically significant effect. The sign is the opposite to the uncertainty factor

in the main empirical application, as expected.
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Table 8: Correlation matrix of individual marcoeconomic/financial variables.

Rcor PC1 vx PC2 vx PC3 vx

INF -0.192 -0.022 -0.447 -0.123
IR EFFR -0.484 -0.653 -0.614 -0.028
T10Y3M 0.089 0.635 -0.094 -0.147

EPU 0.405 0.572 0.091 0.415
EMV 0.217 0.232 0.112 0.413

NFCIm 0.179 0.323 -0.162 0.478
LIXm wti 0.473 0.322 0.789 0.075

Amihm wti -0.122 0.039 -0.571 -0.070
Amivm wti 0.265 0.209 0.570 0.058

LIXm sp500 0.110 -0.035 0.799 -0.202
Amihm sp500 -0.279 0.036 -0.856 0.112
Amivm sp500 0.023 -0.104 0.301 -0.090

IPa -0.329 -0.837 -0.113 0.041
CEAIa -0.261 -0.775 -0.114 0.062

NAIa -0.361 -0.898 0.079 0.022
CCI 0.060 0.076 0.048 -0.681
BCI 0.068 0.333 -0.035 -0.688
CLI 0.092 0.185 0.019 -0.772

PC1 vx 0.407 1.000 -0.000 0.000
PC2 vx 0.318 -0.000 1.000 -0.000
PC3 vx 0.102 0.000 -0.000 1.000

The first three principal components obtained from varimax rota-

tions and the monthly realized correlation (Rcor) for 01/01/1990

till 31/12/2021 (n = 8059).

Table 9: Estimation results for the DSM copula model with one/two explanatory variables.

λ0 β σe δ1 ω1 δ2 ω2 ν LML

DSM PC1 VX 0.224 0.993 0.038 0.147 9.113 20.240 249.910
(0.148;0.303) (0.990;0.996) (0.028;0.048) (0.042;0.253) (1.216;23.578) (14.531;27.309)

DSM PC2 VX 0.183 0.997 0.028 0.108 15.802 17.817 253.790
(0.072;0.289) (0.995;0.998) (0.021;0.035) (-0.038;0.241) (4.475;26.784) (13.497;22.756)

DSM PC3 VX 0.247 0.995 0.032 -0.435 5.937 18.963 254.034
(0.155;0.339) (0.991;0.998) (0.024;0.042) (-0.671;-0.155) (1.183;22.330) (14.062;24.488)

DSM RCor - PC1 VX 0.089 0.972 0.064 1.099 4.239 0.070 15.352 20.788 257.343
(0.032;0.144) (0.957;0.985) (0.046;0.083) (0.856;1.366) (2.141;6.385) (0.018;0.122) (4.848;25.746) (14.987;27.648)

DSM RCor - PC2 VX 0.129 0.982 0.048 0.835 6.164 0.095 14.816 19.107 257.625
(0.060;0.209) (0.968;0.993) (0.033;0.067) (0.342;1.270) (1.801;14.819) (-0.010;0.219) (4.621;26.078) (14.218;24.769)

DSM RCor - PC3 VX 0.114 0.972 0.059 0.877 4.544 -0.240 3.555 19.388 257.116
(0.060;0.172) (0.950;0.990) (0.036;0.086) (0.512;1.193) (1.724;7.464) (-0.390;-0.099) (1.183;7.292) (14.101;25.706)

The table reports the estimation results of the DSM copula model (with t copula). The long term dependence component is modelled using one/two explanatory variables with the restricted beta

weighting function. Top panel contains results for one PC Varimax factor, and bottom panel contains results for the RCor plus one PC Varimax factor as explanatory variables. The selected lag

length in the weighting function is such that the maximum likelihood becomes insensitive to the its choice (K = 24). The numbers in the brackets show the [10% - 90%] credible intervals.

To sum up, the second robustness check provides three important results. First, the resulting

groups are strikingly similar to the ones formed using economic reasoning, however, in some cases,

the economic interpretability is lost. Secondly, for those factors that maintain a clear economic

meaning the sign and size of the effect are comparable to the main empirical application. Finally,

in terms of log-marginal likelihood, the models that use economic factors generally present better

in-sample fit.
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H Variance and covariance forecasts

We estimate the GJR-GARCH model for daily log returns ri,t, where i = {1 for S&P 500, 2 for WTI},
and obtain the set of marginal parameters Θ̂i = (µ̂i, ω̂i, α̂i, β̂i, γ̂i, ξ̂i, ν̂i). Define the realized cumu-

lative returns and the realized cumulative covariance of stock and oil during the k periods at time

t:

ri,t+1:t+k =

k∑
j=1

ri,t+j ,

RCovt+1:t+k =

k∑
j=1

r1,t+jr2,t+j .

Following Engle (2009), the k-step-ahead forecast of the cumulative covariance can be approximated

by

Cov(r1,t+1:t+k, r2,t+1:t+k) ≈
k∑
j=1

ρt+j|t

√
σ2

1,t+j|tσ
2
2,t+j|t.

The k-step-ahead forecasts for the variance at time t of the GJR-GARCH model are derived as:

σ2
i,t+1|t = Et(σ

2
i,t+1) = ω + (α+ γ1{εi,t < 0})ε2

i,t + βσ2
i,t,

σ2
i,t+2|t = Et(σ

2
i,t+2) = ω + (α+ 0.5γ + β)σ2

i,t+1|t

=
ω

1− δ
+ δ(σ2

i,t+1|t −
ω

1− δ
) where δ = α+ 0.5γ + β,

σ2
i,t+k|t = Et(σ

2
i,t+k) =

ω

1− δ
+ δk−1(σ2

i,t+1|t −
ω

1− δ
).

The k-step-ahead forecast of the cumulative volatility forecast using the GJR-GARCH model at

time t is σ2
i,t+1:t+k|t:

σ2
i,t+1|t = Et(σ

2
i,t+1) = ω + (α+ γ1{εi,t < 0})ε2

i,t + βσ2
i,t,

σ2
i,t+1:t+2|t = Et(

2∑
j=1

σ2
i,t+j) =

2ω

1− δ
+

1− δ2

1− δ
(σ2
i,t+1|t −

ω

1− δ
),

σ2
i,t+1:t+k|t = Et(

k∑
j=1

σ2
i,t+j) =

kω

1− δ
+

1− δk

1− δ
(σ2
i,t+1|t −

ω

1− δ
).

For the k-step-ahead forecast of the correlation, we obtain ρt+j|t as the equivalent Pearson corre-

lation implied by copula models. At first, we obtain the k-step-ahead forecast of the stochastic

process λt and use the transformation function Λρ = sin(π2 τκ) = sin(π2
exp(λ)−1
exp(λ)+1) to map the process
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into a restricted domain of the correlation:

λt+k|t = λτ + (λt − λτ )k,

ρt+k|t = Λρ(λt+k|t).

We compare the accuracy of covariance forecasts using the Mincer-Zarnowitz regression (Mincer

and Zarnowitz, 1969) for the in-sample data. We regress the ex-post monthly realized covariance on

a constant and the 22-days ahead cumulative covariance forecast. Table 10 reports the regression

R2 and the p-value of the F -test that the intercept is zero and the slope coefficient is one. The

test does not reject the null at 5% confidence level for none of the models, and the R2 is higher

in DSM copula models with two factors than the simple DSC model. In other words, the DSM

copula models produce 22-days ahead cumulative covariance forecasts that are closer to the actually

observed realized covariance.

Table 10: Mincer-Zarnowitz Regressions for the in-sample data.

Model R2 p-value

DSC 0.292 0.077
DSM-RCor 0.262 0.374
DSM-UNC 0.398 0.433
DSM-RCor-UNC 0.384 0.656
DSM-INR-UNC 0.384 0.254
DSM-UNC-LIQ 0.397 0.956

The table reports the results for the Mincer-Zarnowitz re-

gressions of monthly realized covariance on a constant and

the 22-days ahead cumulative covariance forecast. The p-

value is for the F -test that the intercept is zero and the

slope coefficient is one.
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