UNIVERSITET

Dynamic relationship between Stock market and Bond market:
 A GAS-MIDAS copula approach

Hoang Nguyen

joint with Farrukh Javed
${ }^{(a)}$ School of Business - Örebro University, Sweden

Wednesday $16^{\text {th }}$ June, 2021

Motivation

Optimal portfolio allocation depends on the correlation of Stocks and Bonds.
Certain changes in the dependence might anticipate a worsening of macroeconomic conditions.

Moreover, this dependence fluctuates overtime.
Figure 1. Time-varying correlations-financial market and real economy

Panel A: Stock-bond return correlation

Panel B: Consumption-inflation correlation

Figure: Stock return and bond return correlation Li et al. (2020)

Contributions and findings

Contributions

A Generalized Autoregressive Score (GAS) Mixed Data Sampling (MIDAS) copula model is proposed for the dynamic dependence of Stock returns and Bond returns.

Findings

Besides the realized correlation, other economic variables can explain for the changes in the long term dependence of Stock returns and Bond returns such as Inflation and Interest rate, the state of economy, illiquidity, etc...

Moreover, the Survey of Professional Forecasters (SPF) can provide a forward looking for the changes in the dependence.
(1) Introduction to copulas
(2) Econometric models
(3) Empirical illustration
(4) Conclusion

Introduction to Copulas

Copula is a n-dimensional joint cumulative distribution function (cdf) in the unit domains.

Let $F\left(x_{1}, \ldots, x_{d} \mid \theta\right)$ be a n-dimensional joint cdf with marginals F_{1}, \ldots, F_{d} for all x_{i} in $[-\infty, \infty]$, and $u_{i}=F_{i}\left(x_{i} \mid \theta_{i}\right)$ for all $i=1, \ldots, d$, (see Sklar (1959))

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{d} \mid \theta\right) & =C\left(u_{1}, \ldots, u_{d} \mid \theta\right) \\
f\left(x_{1}, \ldots, x_{d} \mid \theta\right) & =c\left(u_{1}, \ldots, u_{d} \mid \theta_{C}\right) \prod_{i=1}^{n} f\left(x_{i} \mid \theta_{i}\right)
\end{aligned}
$$

Bivariate copulas - Elliptical copulas

$$
\begin{aligned}
\text { Gaussian Copula } C_{R}^{G a}(u) & =\Phi_{R}^{n}\left(\Phi^{-1}\left(u_{1}\right), . ., \Phi^{-1}\left(u_{d}\right)\right) \\
\text { Student Copula } C_{R}^{S t}(u ; \nu) & =F_{R}^{M S t}\left(F^{-1}\left(u_{1} ; \nu\right), . ., F^{-1}\left(u_{d} ; \nu\right)\right)
\end{aligned}
$$

Figure: Contours of bivariate distributions with the same marginal standard normal

Bivariate copulas - Archimedean copulas

Common Bivariate Archimedean Copulas:

$$
C\left(u_{1}, u_{2}\right)=\varphi^{-1}\left(\varphi\left(u_{1}\right)+\varphi\left(u_{2}\right)\right)
$$

Clayton (1978)	Frank (1979)	Gumbel (1960)	Joe (1993)
$\theta \geqslant 0$	$\theta \geqslant 0$	$\theta \geqslant 1$	$\theta \geqslant 1$
$\varphi(t)=t^{-\theta}-1$	$\varphi(t)=-\ln \frac{e^{-\theta t}-1}{e^{-\theta}-1}$	$\varphi(t)=(-\ln t)^{\theta}$	$\varphi(t)=-\log \left(1-(1-t)^{\theta}\right)$
$\varphi^{-1}(s)=(1+s)^{-1 / \theta}$	$\varphi^{-1}(s)=-\frac{\ln \left(1+e^{-s}\left(e^{-\theta}-1\right)\right)}{\theta}$	$\varphi^{-1}(s)=\exp \left(-s^{1 / \theta}\right)$	$\varphi^{-1}(s)=\left(1-\left(1-e^{-s}\right)\right)^{1 / \theta}$
Lower tail $\lambda_{L}=2^{-1 / \theta}$	No tail dependence	Lower tail $\lambda_{L}=0$	Lower tail $\lambda_{L}=0$
Upper tail $\lambda_{U}=0$		Upper tail $\lambda_{U}=2-2^{1 / \theta}$	Upper tail $\lambda_{U}=2-2^{1 / \theta}$

$$
c_{s y m}\left(u_{1}, u_{2}\right)=0.5 c\left(u_{1}, u_{2}\right)+0.5 c_{R 180}\left(u_{1}, u_{2}\right)
$$

Figure: Contours of bivariate distributions with the same marginal standard normal

A copula model

Let $\left(r_{1 t}, r_{2 t}\right)$, for $t=1, \ldots, T$, be the time series of stock returns and bond returns that we want to model their joint dependence. Also let $F_{1}\left(r_{1 t}\right)$ and $F_{2}\left(r_{2 t}\right)$ be their marginal cumulative distribution function. Sklar (1959) decomposes the joint density function $f\left(r_{1 t}, r_{2 t}\right)$ in terms of their marginal density functions $\left(f_{1}, f_{2}\right)$ and copula density function c_{12} as

$$
\begin{equation*}
f\left(r_{1 t}, r_{2 t}\right)=f_{1}\left(r_{1 t}\right) f_{2}\left(r_{2 t}\right) c_{12}\left(u_{1 t}, u_{2 t}\right), \tag{1}
\end{equation*}
$$

where $u_{1 t}=F_{1}\left(r_{1 t}\right)$, and $u_{2 t}=F_{2}\left(r_{2 t}\right)$, for $t=1, \ldots, T$, are a sequence of independent random variables with uniform marginal distribution.

A generalized autoregressive score copula model

Creal et al. (2013) and Harvey (2013) propose dynamic models where time varying parameter follow a generalized autoregressive score (GAS),

$$
\begin{align*}
\left(u_{1 t}, u_{2 t}\right) & \sim c_{t}\left(u_{1 t}, u_{2 t} \mid \theta_{t}\right) \\
\theta_{t} & =\Lambda\left(\lambda_{t}\right) \tag{2}\\
\lambda_{t+1} & =\lambda_{0}(1-\beta)+\alpha \frac{\partial \log c_{t}\left(u_{1 t}, u_{2 t} \mid \lambda_{t}\right)}{\partial \lambda_{t}}+\beta \lambda_{t}
\end{align*}
$$

Note that $0<\beta<1$. In the GAS copula model, the scores depends on the complete density rather than on its first or second moment. Blasques et al. (2014) proved that the use of the scores leads to the minimum Kullback-Leibler divergence between the true conditional density and the model-implied conditional density, while Koopman et al. (2016) showed some empirical examples where the GAS model out performs other observation driven models.

A GAS-MIDAS copula model

The copula parameters are assumed to follow a generalized autoregressive score (GAS) process.

$$
\begin{align*}
\left(u_{1 t}, u_{2 t}\right) & \sim c_{t}\left(u_{1 t}, u_{2 t} \mid \theta_{t}\right), \\
\theta_{t} & =\Lambda\left(\lambda_{t}\right), \\
\lambda_{t+1} & =\lambda_{\tau}(1-\beta)+\alpha \frac{\partial \log c_{t}\left(u_{1 t}, u_{2 t} \mid \lambda_{t}\right)}{\partial \lambda_{t}}+\beta \lambda_{t}, \tag{3}\\
\lambda_{\tau} & =\lambda_{0}+\sum_{j=1}^{N} \delta_{j}\left[\sum_{k=1}^{K_{j}} \phi_{k}\left(\omega_{j}\right) X_{j, \tau-k}\right],
\end{align*}
$$

where $\tau=\lfloor t / L\rfloor$ and ($X_{1 \tau}, \ldots, X_{N \tau}$) are N-dimensional vector of low frequency variables, and $\phi_{k}\left(\omega_{j}\right)$ is the weighting scheme of the variable j on its k lag, for $k=1, \ldots, K$. The weighting scheme of each variable j depends on the regulated parameter ω_{j} for $j=1, \ldots, N$.

An asymmetric GAS-MIDAS copula model

An asymmetric GAS-MIDAS copula model

$$
\begin{align*}
\left(u_{1 t}, u_{2 t}\right) & \sim c_{t}\left(u_{1 t}, u_{2 t} \mid \theta_{t}\right) \\
\theta_{t} & =\Lambda\left(\lambda_{t}\right) \tag{4}\\
\lambda_{t+1} & =\lambda_{\tau}(1-\beta)+\alpha \frac{\partial \log c_{t}\left(u_{1 t}, u_{2 t} \mid \lambda_{t}\right)}{\partial \lambda_{t}}+\beta \lambda_{t}+\gamma\left(v_{t}-\bar{v}\right),
\end{align*}
$$

where γ is the parameter that controls for the asymmetry, v_{t} is a measure of association related to "bad news" at time t and $\bar{v}=\mathbf{E}\left(v_{t}\right)$ at different quantiles $0 \leqslant q_{1}, q_{2} \leqslant 1$ such as,
(a) Normal score: $v_{t}=\left[\Phi^{-1}\left(u_{1 t}\right) \mathbf{I}_{\left\{u_{1 t}<q_{1}\right\}}\right]\left[\Phi^{-1}\left(u_{2 t}\right) \mathbf{I}_{\left\{u_{2 t}<q_{2}\right\}}\right]$.
(b) Spearman's rank: $v_{t}=\left[\left(u_{1 t}-0.5\right) \mathbf{I}_{\left\{u_{1 t}<q_{1}\right\}}\right]\left[\left(u_{2 t}-0.5\right) \mathbf{I}_{\left\{u_{2 t}<q_{2}\right\}}\right]$.
(c) Spearman's footrule: $v_{t}=\left|u_{1 t}-u_{2 t}\right| \mathbf{I}_{\left\{u_{1 t}<q_{1}\right\}} \mathbf{I}_{\left\{u_{2 t}<q_{2}\right\}}$.
(d) Gini's gamma: $v_{t}=\left(\left|1-u_{1 t}-u_{2 t}\right|-\left|u_{1 t}-u_{2 t}\right|\right) \mathbf{I}_{\left\{u_{1 t}<q_{1}\right\}} \mathbf{I}_{\left\{u_{2 t}<q_{2}\right\}}$

Empirical illustration

Figure: Stock returns and 10Y Government Bond returns.

Multiplicative GARCH MIDAS model, Conrad and Kleen (2020)

Let $r_{i t}$ be a return of Stock (or Bond) at time t,
$r_{i t}=\mu_{i}+\sqrt{\kappa_{i \tau} g_{i t}} \epsilon_{i t}$

Multiplicative GARCH MIDAS models

$g_{i t}=\left(1-\alpha_{i}-0.5 \gamma_{i}-\beta_{i}\right)+\left(\alpha_{i}+\gamma_{i} 1_{\left\{\epsilon_{i, t-1}<0\right\}}\right) g_{i, t-1} \epsilon_{i, t-1}^{2}+\beta_{i} g_{i, t-1}$
GJR-GARCH
$\kappa_{i \tau}=\exp \left(m_{i}+\sum_{j=1}^{N_{i}} \delta_{i, j}\left[\sum_{k=1}^{K_{j}} \phi_{k}\left(\omega_{i, j, 1}, \omega_{i, j, 2}\right) X_{i, j, \tau-k}\right]\right)$
Long term components
(a) GARCH-MIDAS for the marginal distribution of Stock returns (01/01/1990-31/03/2021)

	μ	α	β	γ	m	δ_{1}	w_{1}	δ_{2}	w_{2}	K	LLH	BIC
RV Stock	$\begin{gathered} \hline 0.029^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.009) \end{gathered}$	$\begin{gathered} \hline 0.828^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} \hline 0.215^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} -1.243^{* * *} \\ (0.119) \end{gathered}$	$\begin{gathered} \hline 1.171^{* * *} \\ (0.091) \end{gathered}$	$\begin{gathered} \hline 2.840^{* * *} \\ (0.665) \end{gathered}$			264	-1.301	2.610
VXO	$\begin{gathered} 0.026 * * * \\ (0.009) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.854^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} 0.086^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -2.057^{* * *} \\ (0.075) \end{gathered}$	$\begin{gathered} 1.435^{* * *} \\ (0.052) \end{gathered}$	$\begin{gathered} 3.789^{* * *} \\ (0.743) \end{gathered}$			3	-1.286	2.580
VIX	$\begin{gathered} 0.025^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.012) \end{gathered}$	$\begin{gathered} 0.849^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} 0.098^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} -2.158^{* * *} \\ (0.085) \end{gathered}$	$\begin{gathered} 1.547^{* * *} \\ (0.061) \end{gathered}$	$\begin{gathered} 3.417^{* * *} \\ (0.627) \end{gathered}$			3	-1.289	2.586
$\mathrm{VXO}+\mathrm{NFCl}$	$\begin{gathered} 0.025^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.851^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} 0.091^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} -1.898^{* * *} \\ (0.102) \end{gathered}$	$\begin{gathered} 1.355^{* * *} \\ (0.063) \end{gathered}$	$\begin{gathered} 3.768^{* * *} \\ (0.723) \end{gathered}$	$\begin{aligned} & 0.151^{* *} \\ & (0.064) \end{aligned}$	$\begin{gathered} 2.176 \\ (1.659) \end{gathered}$	52	-1.286	2.582
$\mathrm{VXO}+\mathrm{NAI}$	$\begin{gathered} 0.024^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.858^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} 0.091^{* * *} \\ (0.017) \end{gathered}$	$\begin{gathered} -1.936^{* * *} \\ (0.088) \end{gathered}$	$\begin{gathered} 1.323^{* * *} \\ (0.065) \end{gathered}$	$\begin{gathered} 3.766^{* * *} \\ (0.71) \end{gathered}$	$\begin{gathered} -0.197 \\ (0.098) \end{gathered}$	$\begin{aligned} & 7.039 \\ & (5.07) \end{aligned}$	36	-1.286	2.582
VXO+INDPRO	$\begin{gathered} 0.026 * * * \\ (0.009) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.014) \\ \hline \end{gathered}$	$\begin{gathered} 0.847^{* * *} \\ (0.024) \\ \hline \end{gathered}$	$\begin{gathered} 0.087^{* * *} \\ (0.018) \\ \hline \end{gathered}$	$\begin{gathered} -2.085^{* * *} \\ (0.089) \\ \hline \end{gathered}$	$\begin{gathered} 1.463^{* * *} \\ (0.057) \\ \hline \end{gathered}$	$\begin{gathered} 3.787^{* * *} \\ (0.753) \\ \hline \end{gathered}$	$\begin{gathered} -0.008 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 33.645 \\ (45.377) \\ \hline \end{gathered}$	36	-1.286	2.582

The tables report the estimation results of the multiplicative component GARCH-MIDAS model for the Stock returns and Bond returns proposed by Conrad and Kleen (2020). The lag length K of the explanatory variables are set based on Conrad and Kleen (2020) and the weighting scheme is the restricted beta function. The values of the maximum likelihood (LLH) and the Bayesian information criteria (BIC) are normalized for the number of observations which shows that the GARCH-MIDAS with VXO index is preferred for the marginal distribution.

Empirical illustration - Copula functions

Table: Comparison of DCC MIDAS RC and GAS MIDAS RC Copulas

	α	β	λ_{0}	δ_{1}	$\omega_{1}^{(2)}$	ν	K	LLH	AIC	BIC
DCC	$0.036^{* * *}$	$0.960^{* * *}$						674.2	-1344.5	-1330.5
	(0.004)	(0.005)								
DCC MIDAS	$0.065^{* * *}$	$0.862^{* * *}$	0.013	$1.009^{* * *}$	$6.686^{* * *}$		24	702.4	-1394.8	-1359.9
	(0.007)	(0.023)	(0.019)	(0.050)	(1.806)					
GAS MIDAS Gaussian	$0.213^{* * *}$	$0.927^{* * *}$	0.011	$1.987^{* * *}$	$6.392^{* * *}$		24	701.0	-1392.0	-1357.1
	(0.023)	(0.018)	(0.039)	(0.105)	(1.705)					
GAS MIDAS Student	$0.253^{* * *}$	$0.934^{* * *}$	0.006	$2.016^{* * *}$	$6.410^{* * *}$	$8.649^{* * *}$	24	759.8	-1507.6	-1465.8
	(0.032)	(0.020)	(0.045)	(0.122)	(1.903)	(0.937)				
GAS MIDAS sClayton	$0.183^{* * *}$	$0.961^{* * *}$	$-0.032^{* * *}$	$1.489^{* * *}$	$2.933^{* * *}$		24	717.8	-1425.6	-1390.7
	(0.004)	(0.001)	(0.002)	(0.021)	(0.045)					
GAS MIDAS sGumbel	$0.045^{* * *}$	$0.958^{* * *}$	$0.014^{* * *}$	$0.881^{* * *}$	$3.122^{* * *}$		24	735.5	-1461.0	-1426.2
	(0.000)	(0.000)	(0.001)	(0.005)	(0.017)					
GAS MIDAS Frank	$1.624^{* * *}$	$0.986^{* * *}$	$-0.257^{* * *}$	$4.852^{* * *}$	$1.006^{* * *}$		24	653.2	-1296.3	-1261.5
	(0.024)	(0.000)	(0.004)	(0.027)	(0.000)					
GAS MIDAS sJoe	$0.155^{* * *}$	$0.969^{* * *}$	$-0.035^{* * *}$	$1.037^{* * *}$	$2.094^{* * *}$		24	699.0	-1387.9	-1353.1
	(0.001)	(0.000)	(0.001)	(0.007)	(0.008)					

[^0]
Factors that affect the Stock Bond dependence (I)

Table: Correlation matrix of explanatory variables

	RCor	PC II	PC SE	PC UC	PC IL	PC SPF II	PC SPF SE	PC SPF UC
PC II	0.429				0.807	0.046	-0.119	
PC SE	0.264	0.375			0.296	0.432	-0.636	
PC UC	-0.277	-0.175	-0.492			-0.086	-0.312	0.355
PC IL	-0.437	-0.083	-0.368	0.435		-0.087	-0.106	0.231
Inflation	0.323	0.789			0.725	0.084	-0.014	
Term spread	0.013	-0.607			-0.277	0.025	0.086	
Short-term interest	0.595	0.900			0.793	0.034	-0.173	
Industrial Production	0.246		0.935		0.319	0.465	-0.586	
ADS Index	0.114		0.363		-0.009	0.131	-0.041	
Coincident Index	0.228		0.892			0.270	0.332	-0.657
VXO			0.936		0.001	-0.320	0.380	
RV Stock			0.947		-0.032	-0.292	0.333	
RV Bond		0.805		-0.222	-0.221	0.232		
Stock Illiquidity	-0.308			0.640	-0.041	-0.271	0.309	
Bond Illiquidity	0.307				-0.672	0.072	-0.125	-0.001

The table reports the correlation matrix of explanatory variables. We divide 12 varibles into 4 main groups such as Inflation and Interest rate, the State of Economy, Uncertainty and Illiquidity.

Factors that affect the Stock Bond dependence (II)

Table: The asymmetric GAS MIDAS Student- t Copula with one explanatory variable

	α	β	λ_{0}	γ	δ_{1}	$\omega_{1}^{(2)}$	ν	K	LLH	AIC	BIC
RCor	$\begin{gathered} \hline 0.118^{* * *} \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.904^{* * *} \\ (0.020) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.056^{*} \\ (0.033) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.576^{* * *} \\ (0.243) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.514^{* * *} \\ (0.119) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.285^{* * *} \\ (1.623) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 9.2^{* * *} \\ & (1.071) \\ & \hline \end{aligned}$	24	788.5	-1563.1	-1514.3
PC II	$\begin{gathered} \hline 0.105^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} \hline 0.980^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.209 * * * \\ (0.051) \end{gathered}$	$\begin{gathered} \hline 0.735^{* * *} \\ (0.136) \end{gathered}$	$\begin{gathered} \hline 0.152^{* * *} \\ (0.044) \end{gathered}$	$\begin{gathered} \hline 2.815 \\ (3.250) \end{gathered}$	$\begin{aligned} & 8.5^{* * *} \\ & (0.917) \end{aligned}$	12	763.0	-1511.9	-1463.1
PC SE	$\begin{gathered} 0.108^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} 0.982^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.220^{* * *} \\ (0.055) \end{gathered}$	$\begin{gathered} 0.697^{* * *} \\ (0.131) \end{gathered}$	$\begin{aligned} & 0.088^{*} \\ & (0.048) \end{aligned}$	$\begin{gathered} 2.605^{* * *} \\ (0.008) \end{gathered}$	$\begin{aligned} & 8.5^{* * *} \\ & (0.904) \end{aligned}$	12	759.2	-1504.4	-1455.7
PC UC	$\begin{gathered} 0.109 * * * \\ (0.019) \end{gathered}$	$\begin{gathered} 0.984^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.226 * * * \\ (0.059) \end{gathered}$	$\begin{gathered} 0.652^{* * *} \\ (0.126) \end{gathered}$	$\begin{aligned} & -0.021 \\ & (0.053) \end{aligned}$	$\begin{gathered} 7.592^{* * *} \\ (0.046) \end{gathered}$	$\begin{aligned} & 8.4^{* * *} \\ & (0.890) \end{aligned}$	18	757.7	-1501.4	-1452.6
PC IL	$\begin{gathered} 0.111^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} 0.976^{* * *} \\ (0.005) \\ \hline \end{gathered}$	$\begin{gathered} -0.214^{* * *} \\ (0.048) \\ \hline \end{gathered}$	$\begin{gathered} 0.802^{* * *} \\ (0.158) \\ \hline \end{gathered}$	$\begin{gathered} -0.358^{* * *} \\ (0.085) \end{gathered}$	$\begin{gathered} 5.075^{* * *} \\ (0.079) \\ \hline \end{gathered}$	$\begin{aligned} & 8.9^{* * *} \\ & (1.001) \\ & \hline \end{aligned}$	18	764.2	-1514.4	-1465.6
PC SPF II	$\begin{gathered} \hline 0.125^{* * *} \\ (0.022) \end{gathered}$	$\begin{gathered} \hline 0.970^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} -0.126^{* *} \\ (0.050) \end{gathered}$	$\begin{gathered} \hline 0.867^{* * *} \\ (0.167) \end{gathered}$	$\begin{gathered} \hline 0.282^{* * *} \\ (0.075) \end{gathered}$	$\begin{gathered} 2.960 \\ (2.723) \end{gathered}$	$\begin{aligned} & 8.3^{* * *} \\ & (0.876) \end{aligned}$	6	765.7	-1517.5	-1468.7
PC SPF SE	$\begin{gathered} 0.111^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} 0.984^{* * *} \\ (0.003) \end{gathered}$	$\begin{gathered} -0.231^{* * *} \\ (0.061) \end{gathered}$	$\begin{gathered} 0.645^{* * *} \\ (0.132) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.067) \end{gathered}$	$\begin{gathered} 6.541^{* * *} \\ (0.023) \end{gathered}$	$\begin{aligned} & 8.3^{* * *} \\ & (0.871) \end{aligned}$	5	757.6	-1501.2	-1452.4
PC SPF UC	$\begin{gathered} 0.110^{* * *} \\ (0.018) \\ \hline \end{gathered}$	$\begin{gathered} 0.984^{* * *} \\ (0.003) \\ \hline \end{gathered}$	$\begin{gathered} -0.231^{* * *} \\ (0.059) \\ \hline \end{gathered}$	$\begin{gathered} 0.649 * * * \\ (0.125) \\ \hline \end{gathered}$	$\begin{gathered} -0.102 \\ (0.121) \\ \hline \end{gathered}$	$\begin{gathered} 5.422 \\ (6.115) \end{gathered}$	$\begin{aligned} & 8.5^{* * *} \\ & (0.902) \end{aligned}$	4	758.1	-1502.2	-1453.5

[^1]
Long-term dependence component

The figure shows the long-term Kendall's τ correlation between Stock returns and Bond returns using DCC MIDAS with RC, GAS MIDAS with RC, GAS MIDAS with SPF, GAS MIDAS with RC and SPF. The shaded areas highlight the recession periods based on the NBER indicators.

Total dependence

The figure shows the Kendall's τ correlation between Stock returns and Bond returns using DCC MIDAS with RC, GAS MIDAS with RC, GAS MIDAS with SPF, GAS MIDAS with RC and SPF. The shaded areas highlight the recession periods based on the NBER indicators.

Out-of-sample forecast - VaR

Based on the simulated returns, we construct the simulated portfolio of stock and bond at time t and calculate the $\mathrm{VaR}_{q, t}$ and $\mathrm{ES}_{q, t}$ and their associate risk measure,

Out-of-sample forecast - VaR

Table: Risk measures

	VaR	ES	IF	AD	SD	QS	ALS				
		$\mathrm{q}=1 \%$									
DCC	-1.291	-1.644	14	6.149	4.212	19.383	1527.997				
DCC MIDAS	-1.286	-1.641	14	6.071	4.123^{*}	19.256^{*}	1519.746				
GAS MIDAS RCor	-1.302	-1.673	14	5.671	3.752	19.020	1503.488				
GAS MIDAS PC II	-1.321	-1.689	12	$5.461^{* *}$	$3.489^{* *}$	18.91^{*}	1495.735				
GAS MIDAS PC IIIL	-1.325	-1.696	12	$5.187^{* *}$	$3.241^{* *}$	18.762^{*}	1470.668				
	$\mathrm{q}=0.5 \%$										
DCC	-1.497	-1.905	10	4.023	2.366	11.670	1713.927				
DCC MIDAS	-1.492	-1.905	10	3.745	2.092	11.365	1684.572				
GAS MIDAS RCor	-1.519	-1.945	10	3.502	1.937	11.259	1669.379				
GAS MIDAS PC II	-1.541	-1.959	8	$3.043^{* *}$	1.543^{*}	10.910	1629.636				
GAS MIDAS PC II-IL	-1.543	-1.970	7	$2.858^{* *}$	$1.504^{* *}$	10.733	1600.582				

The table reports the average VaR and ES together with the sum of the associated risk measures. ${ }^{* * *, * *, * \text { denote that the }}$ corresponding model significantly outperforms the Gaussian VAR at $1 \%, 5 \%, 10 \%$ level.

Out-of-sample forecast - Portfolio allocation

Following Patton (2004), we assume the CRRA utility function as,

$$
\begin{align*}
U\left(r_{t}, \eta\right) & = \begin{cases}(1-\eta)^{-1}\left(P_{0}\left(1+r_{t}\right)\right)^{1-\eta} & \text { if } \eta \neq 1 \\
\log \left(P_{0}\left(1+r_{t}\right)\right) & \text { if } \eta=1\end{cases} \tag{5}\\
r_{t} & =w_{1 t} r_{1 t}+\left(1-w_{1 t}\right) r_{2 t}
\end{align*}
$$

We measure the performance fee (Fee) and the break even transaction cost (TC) per trade,

$$
\begin{array}{r}
\sum_{t=1}^{T} U\left(r_{t}^{B}-\mathrm{Fee}, \eta\right)=\sum_{t=1}^{T} U\left(r_{t}^{A}, \eta\right), \\
\sum_{t=1}^{T} U\left(r_{t}^{B}-T C\left|w_{1 t}^{B}-w_{1, t-1}^{B} \frac{1+r_{1 t-1}}{1+r_{t-1}^{B}}\right|, \eta\right)=\sum_{t=1}^{T} U\left(r_{t}^{A}, \eta\right)
\end{array}
$$

Out-of-sample forecast - Portfolio allocation

Table: Economic values of dynamic portfolios over a passive portfolio

	$\eta=1$		$\eta=5$		$\eta=10$	
	Fee	TC	Fee	TC	Fee	TC
DCC	365.61	16.83	148.68	23.91	121.93	26.73
DCC MIDAS	381.18	17.54	157.37	25.54	134.12	30.13
GAS MIDAS RCor	393.09	17.62	161.45	26.15	137.43	30.91
GAS MIDAS PC II	365.88	16.25	154.10	24.48	133.08	29.64
GAS MIDAS PC II-IL	370.62	15.99	161.97	25.57	140.58	31.31

The table reports the economic values of dynamic portfolios over a passive portfolio. The initial weight of the passive portfolio is chosen to maximize the CRRA utility function using the historical in-sample data. The performance fees are normalized to annual basis points (bps) and the break even transaction costs are expressed in basis points of the proportional cost for reweighting.

Contributions and Discussions

Contributions

A Generalized Autoregressive Score (GAS) Mixed Data Sampling (MIDAS) copula model is proposed for the dynamic dependence of Stock returns and Bond returns.

Findings
Besides the realized covariance, other economic variables can explain for the change in the long term dependence of Stock returns and Bond returns such as Inflation and Interest rate, the state of economy, etc...

Moreover, the Survey of Professional forecasters can provide a forward looking for the changes in the dependence.

Thank you

A Dynamic Conditional Correlation Gaussian copula model

Following Engle (2002), a DCC model can be presented as,

$$
\begin{align*}
\left(\epsilon_{1 t}, \epsilon_{2 t}\right) & \sim \mathbf{N}\left(\epsilon_{1 t}, \epsilon_{2 t} \mid \mathbf{0}, R_{t}\right), \\
R_{t} & =Q_{t}^{*-1 / 2} Q_{t} Q_{t}^{*-1 / 2} \text { where } Q_{t}^{*}=\operatorname{diag}\left(Q_{t}\right) \tag{6}\\
q_{12, t+1} & =q_{12,0}(1-\alpha-\beta)+\alpha \epsilon_{1 t} \epsilon_{2 t}+\beta q_{12, t},
\end{align*}
$$

where ($q_{12,0}, \alpha, \beta$) are the fixed parameters (Note that $0<\alpha+\beta<1$). A equivalent DCC Gaussian copula,

$$
\begin{equation*}
\left(u_{1 t}, u_{2 t}\right) \sim c_{12}^{(\text {Gauss })}\left(u_{1 t}, u_{2 t} \mid R_{t}\right), \tag{7}
\end{equation*}
$$

where $\epsilon_{1 t}=\Phi^{-1}\left(u_{1 t}\right), \epsilon_{2 t}=\Phi^{-1}\left(u_{2 t}\right)$.

A DCC MIDAS Gaussian copula model

Colacito et al. (2011) and Conrad et al. (2014) extend the DCC model such that there are N variables that can explain for the long term dependence. A DCC MIDAS model can be presented as,

$$
\begin{align*}
\left(\epsilon_{1 t}, \epsilon_{2 t}\right) & \sim \mathbf{N}\left(\epsilon_{1 t}, \epsilon_{2 t} \mid \mathbf{0}, R_{t}\right), \\
R_{t} & =Q_{t}^{*-1 / 2} Q_{t} Q_{t}^{*-1 / 2} \text { where } Q_{t}^{*}=\operatorname{diag}\left(Q_{t}\right), \\
q_{12, t+1} & =q_{12, \tau}(1-\alpha-\beta)+\alpha \epsilon_{1 t} \epsilon_{2 t}+\beta q_{12, t} \tag{8}\\
q_{12, \tau} & =\lambda_{0}+\sum_{j=1}^{N} \delta_{j}\left[\sum_{k=1}^{K_{j}} \phi_{k}\left(\omega_{j, 1}, \omega_{j, 2}\right) X_{j, \tau-k}\right],
\end{align*}
$$

where $\left(\lambda_{0}, \alpha, \beta, \delta_{j}, \omega_{j}\right)$ are the fixed copula parameters and $\tau=\lfloor t / L\rfloor$. $\left(X_{1 \tau}, \ldots, X_{N \tau}\right)$ are N-dimensional vector of low frequency variables, and $\phi_{k}\left(\omega_{j 1}, \omega_{j 2}\right)$ is the weighting scheme of the variable j on its k lag, for $k=1, \ldots, K$. Note that $0<\alpha+\beta<1$.

Simulation studies - Dynamic update

We compare the proposed GAS MIDAS RC copula models with the EWMA, the DCC (Engle, 2002), the Gaussian GAS (Creal et al., 2013) model in different stress scenarios based on the proposal of Engle (2002). We simulate $T=2000$ observations from a bivariate Gaussian copula with time-varying correlation parameter ρ_{t}. We consider five models for the behavior of ρ_{t} such that,
(a) Constant: $\rho_{t}=0.8$.
(b) Sine: $\rho_{t}=0.5 \cos (2 \pi t / 250)$.
(c) Fast Sine: $\rho_{t}=0.5 \cos (2 \pi t / 25)$.
(d) Step: $\rho_{t}=0.5-I(t>1000)$.
(e) Ramp: $\rho_{t}=((t \bmod 200)-100) / 101$.

Simulation studies - Number of lags

Figure: The ρ_{t} processes for different test scenarios

Simulation studies - MSE and MAE

Table: MAE and MSE results: a simulation study

	Constant	Sine	Fast sine	Step	Ramp	
	(a) MAE					
EWMA	5.067	1.184	1.180	1.003	1.357	
DCC	1.000	1.000	1.000	1.000	1.000	
GAS	0.798	1.002	0.988	0.875	0.940	
GAS MIDAS	0.943	0.609	0.986	0.866	0.875	
(b) MSE						
EWMA	25.007	1.341	1.399	0.868	1.902	
DCC	1.000	1.000	1.000	1.000	1.000	
GAS	0.666	0.999	0.978	0.863	0.919	
GAS MIDAS	0.980	0.387	0.978	0.850	0.828	

The table shows the relative MAE and MSE of the estimation of the correlation using the EWMA, the GAS, the GAS MIDAS over the benchmark DCC model. We use the restricted beta weighting function and $K=9$ lags of monthly RCor as a low frequency explanatory variable for the long term change in the correlation. We generate 200 psuedo datasets for each stress test and calculate the average of MAE and MSE. The entries less than 1 indicate that the given model is better.

Factors that affect the Stock Bond dependence (III)

Table: The GAS MIDAS Student- t Copula with two explanatory variables

	α	β	λ_{0}	γ	δ_{1}	$\omega_{1}^{(2)}$	δ_{2}	$\omega_{2}^{(2)}$	ν	K	LLH	AIC	BIC
(a) Realized	with												
PC II	$\begin{gathered} 0.124^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} 0.908^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} -0.068^{* *} \\ (0.034) \end{gathered}$	$\begin{gathered} 1.519 * * * \\ (0.242) \end{gathered}$	$\begin{gathered} 1.476^{* * *} \\ (0.138) \end{gathered}$	$\begin{aligned} & 4.575^{* *} \\ & (1.869) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.035) \end{gathered}$	$\begin{gathered} 1.330 \\ (4.174) \end{gathered}$	$\begin{aligned} & 9.2^{* * *} \\ & (1.070) \end{aligned}$	12	788.7	-1559.4	-1496.6
PC SE	$\begin{gathered} 0.126^{* * *} \\ (0.028) \end{gathered}$	$\begin{gathered} 0.904^{* * *} \\ (0.020) \end{gathered}$	$\begin{aligned} & -0.064^{*} \\ & (0.034) \end{aligned}$	$\begin{gathered} 1.516^{* * *} \\ (0.238) \end{gathered}$	$\begin{gathered} 1.497^{* * *} \\ (0.127) \end{gathered}$	$\begin{gathered} 5.725^{* * *} \\ (1.783) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.033) \end{gathered}$	$\begin{gathered} 1.740 \\ (4.084) \end{gathered}$	$\begin{aligned} & 8.9^{* * *} \\ & (1.001) \end{aligned}$	12	788.9	-1559.7	-1497.0
PC UC	$\begin{gathered} 0.121^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} 0.906^{* * *} \\ (0.021) \end{gathered}$	$\begin{aligned} & -0.066^{*} \\ & (0.035) \end{aligned}$	$\begin{gathered} 1.594^{* * *} \\ (0.251) \end{gathered}$	$\begin{gathered} 1.496 * * * \\ (0.140) \end{gathered}$	$\begin{aligned} & 4.437^{* *} \\ & (1.755) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.069) \end{aligned}$	$\begin{gathered} 1.345 \\ (3.630) \end{gathered}$	$\begin{aligned} & 8.9^{* * *} \\ & (0.997) \end{aligned}$	18	788.3	-1558.6	-1495.9
PC IL	$\begin{gathered} 0.112^{* * *} \\ (0.027) \end{gathered}$	$\begin{gathered} 0.904^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} -0.103^{* * *} \\ (0.035) \end{gathered}$	$\begin{gathered} 1.594^{* * *} \\ (0.250) \end{gathered}$	$\begin{gathered} 1.270^{* * *} \\ (0.146) \end{gathered}$	$\begin{gathered} 6.756^{* * *} \\ (2.320) \end{gathered}$	$\begin{gathered} -0.198^{* *} \\ (0.080) \end{gathered}$	$\begin{aligned} & 1.628^{*} \\ & (0.912) \end{aligned}$	$\begin{aligned} & 9.4^{* * *} \\ & (1.113) \end{aligned}$	18	791.4	-1564.7	-1502.0
PC SPF II	$\begin{gathered} 0.108^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} 0.931^{* * *} \\ (0.012) \end{gathered}$	$\begin{aligned} & -0.056^{*} \\ & (0.033) \end{aligned}$	$\begin{gathered} 1.342^{* * *} \\ (0.210) \end{gathered}$	$\begin{gathered} 1.495^{* * *} \\ (0.177) \end{gathered}$	$\begin{gathered} 2.139 * * * \\ (0.095) \end{gathered}$	$\begin{gathered} -0.017 \\ (0.049) \end{gathered}$	$\begin{gathered} 3.909^{* * *} \\ (0.022) \end{gathered}$	$\begin{aligned} & 9.3^{* * *} \\ & (1.097) \end{aligned}$	6	785.1	-1552.2	-1489.5
PC SPF SE	$\begin{gathered} 0.116^{* * *} \\ (0.030) \end{gathered}$	$\begin{gathered} 0.928^{* * *} \\ (0.023) \end{gathered}$	$\begin{gathered} -0.093^{* *} \\ (0.043) \end{gathered}$	$\begin{gathered} 1.264^{* * *} \\ (0.221) \end{gathered}$	$\begin{gathered} 1.463^{* * *} \\ (0.172) \end{gathered}$	$\begin{gathered} 3.302 \\ (2.136) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.043) \end{aligned}$	$\begin{gathered} 2.921^{* * *} \\ (0.267) \end{gathered}$	$\begin{aligned} & 8.4^{* * *} \\ & (0.884) \end{aligned}$	5	786.5	-1555.0	-1492.3
PC SPF UC	$\begin{gathered} 0.118^{* * *} \\ (0.028) \\ \hline \end{gathered}$	$\begin{gathered} 0.902^{* * *} \\ (0.020) \\ \hline \end{gathered}$	$\begin{gathered} -0.067^{* *} \\ (0.033) \\ \hline \end{gathered}$	$\begin{gathered} 1.590^{* * *} \\ (0.247) \\ \hline \end{gathered}$	$\begin{gathered} 1.525^{* * *} \\ (0.118) \\ \hline \end{gathered}$	$\begin{gathered} 5.386^{* * *} \\ (1.653) \\ \hline \end{gathered}$	$\begin{gathered} -0.042 \\ (0.072) \\ \hline \end{gathered}$	$\begin{gathered} 2.454^{* * *} \\ (0.025) \\ \hline \end{gathered}$	$\begin{aligned} & 9.1^{* * *} \\ & (1.050) \\ & \hline \end{aligned}$	4	788.6	-1559.3	-1496.5

The table reports the estimation results of the asymmetric GAS MIDAS Student-t copula model for the dependence of Stock returns and Bond returns. We choose the Realized correlation with another explanatory variable to explain for the long term component of the dependence. The lag length are selected such that the maximum likelihood becomes insensitive to the choice of K and the restricted beta weighting scheme function is chosen based on previous analysis. The values of the LLH, the AIC, the BIC show that Realized correlation is the most preferred for the dynamic dependence of Stock returns and Bond returns. ***,**,* denote significant at $1 \%, 5 \%, 10 \%$ level.

Factors that affect the Stock Bond dependence (IV)

Table: The GAS MIDAS Student- t Copula with two explanatory variables

	α	β	λ_{0}	γ	δ_{1}	$\omega_{1}^{(2)}$	δ_{2}	$\omega_{2}^{(2)}$	ν	K	LLH	AIC	BIC
(b) PC Inflation with													
PC SE	$\begin{gathered} 0.105^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} 0.978^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.206^{* * *} \\ (0.049) \end{gathered}$	$\begin{gathered} 0.772^{* * *} \\ (0.139) \end{gathered}$	$\begin{gathered} 0.144^{* * *} \\ (0.045) \end{gathered}$	$\begin{gathered} 6.347^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.045 \\ (0.045) \end{gathered}$	$\begin{gathered} 2.556^{* * *} \\ (0.008) \end{gathered}$	$\begin{aligned} & 8.4^{* * *} \\ & (0.897) \end{aligned}$	12	763.3	-1508.6	-1445.9
PC UC	$\begin{gathered} 0.105^{* * *} \\ (0.019) \end{gathered}$	$\begin{gathered} 0.979^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.208^{* * *} \\ (0.051) \end{gathered}$	$\begin{gathered} 0.741^{* * *} \\ (0.137) \end{gathered}$	$\begin{gathered} 0.145^{* * *} \\ (0.044) \end{gathered}$	$\begin{gathered} 6.373^{* * *} \\ (0.039) \end{gathered}$	$\begin{aligned} & -0.016 \\ & (0.051) \end{aligned}$	$\begin{gathered} 2.549 * * * \\ (0.009) \end{gathered}$	$\begin{aligned} & 8.5^{* * *} \\ & (0.921) \end{aligned}$	18	763.0	-1508.0	-1445.3
PC IL	$\begin{gathered} 0.104^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.956^{* * *} \\ (0.009) \end{gathered}$	$\begin{gathered} -0.197^{* * *} \\ (0.036) \end{gathered}$	$\begin{gathered} 1.181^{* * *} \\ (0.199) \end{gathered}$	$\begin{gathered} 0.197^{* * *} \\ (0.031) \end{gathered}$	$\begin{gathered} 1.326 \\ (0.986) \end{gathered}$	$\begin{gathered} -0.405^{* * *} \\ (0.087) \end{gathered}$	$\begin{gathered} 7.399 \\ (6.484) \end{gathered}$	$\begin{aligned} & 9.1^{* * *} \\ & (1.057) \end{aligned}$	18	778.0	-1538.1	-1475.4
PC SPF II	$\begin{gathered} 0.130^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.977^{* * *} \\ (0.005) \end{gathered}$	$\begin{aligned} & -0.055 \\ & (0.067) \end{aligned}$	$\begin{gathered} 0.717^{* * *} \\ (0.178) \end{gathered}$	$\begin{gathered} 0.134^{* * *} \\ (0.028) \end{gathered}$	$\begin{gathered} 1.813 \\ (1.124) \end{gathered}$	$\begin{gathered} 0.134^{* * *} \\ (0.028) \end{gathered}$	$\begin{gathered} 1.813 \\ (1.124) \end{gathered}$	$\begin{aligned} & 9.6^{* * *} \\ & (1.182) \end{aligned}$	6	760.8	-1507.7	-1458.0
PC SPF SE	$\begin{gathered} 0.137^{* * *} \\ (0.025) \end{gathered}$	$\begin{gathered} 0.983^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 0.009 \\ (0.145) \end{gathered}$	$\begin{aligned} & 0.549^{* *} \\ & (0.242) \end{aligned}$	$\begin{gathered} 0.198^{* * *} \\ (0.059) \end{gathered}$	$\begin{gathered} 3.025 \\ (3.481) \end{gathered}$	$\begin{gathered} 0.109 \\ (0.104) \end{gathered}$	$\begin{gathered} 2.601^{* * *} \\ (0.051) \end{gathered}$	$\begin{aligned} & 8.6^{* * *} \\ & (0.950) \end{aligned}$	5	756.1	-1494.2	-1431.5
PC SPF UC	$\begin{gathered} 0.107^{* * *} \\ (0.018) \\ \hline \end{gathered}$	$\begin{gathered} 0.977^{* * *} \\ (0.005) \\ \hline \end{gathered}$	$\begin{gathered} -0.192^{* * *} \\ (0.048) \\ \hline \end{gathered}$	$\begin{gathered} 0.874^{* * *} \\ (0.162) \\ \hline \end{gathered}$	$\begin{gathered} 0.137^{* * *} \\ (0.041) \\ \hline \end{gathered}$	$\begin{gathered} 8.411^{* * *} \\ (0.031) \\ \hline \end{gathered}$	$\begin{gathered} -0.104 \\ (0.123) \\ \hline \end{gathered}$	$\begin{gathered} 2.445^{* * *} \\ (0.016) \\ \hline \end{gathered}$	$\begin{aligned} & 8.2^{* * *} \\ & (0.840) \\ & \hline \end{aligned}$	4	762.4	-1506.8	-1444.1

The table reports the estimation results of the asymmetric GAS MIDAS Student-t copula model for the dependence of Stock returns and Bond returns. We choose the Realized correlation with another explanatory variable to explain for the long term component of the dependence. The lag length are selected such that the maximum likelihood becomes insensitive to the choice of K and the restricted beta weighting scheme function is chosen based on previous analysis. The values of the LLH, the AIC, the BIC show that Realized correlation is the most preferred for the dynamic dependence of Stock returns and Bond returns. ***,**,* denote significant at $1 \%, 5 \%, 10 \%$ level.
F. Blasques, S. J. Koopman, A. Lucas, et al. Stationarity and ergodicity of univariate generalized autoregressive score processes. Electronic Journal of Statistics, 8(1): 1088-1112, 2014.
R. Colacito, R. F. Engle, and E. Ghysels. A component model for dynamic correlations. Journal of Econometrics, 164(1):45-59, 2011.
C. Conrad and O. Kleen. Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models. Journal of Applied Econometrics, 35(1):19-45, 2020.
C. Conrad, K. Loch, and D. Rittler. On the macroeconomic determinants of long-term volatilities and correlations in us stock and crude oil markets. Journal of Empirical Finance, 29:26-40, 2014.
D. Creal, S. J. Koopman, and A. Lucas. Generalized Autoregressive Score models with applications. Journal of Applied Econometrics, 28(5):777-795, 2013.
R. Engle. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business \& Economic Statistics, 20(3):339-350, 2002.
A. C. Harvey. Dynamic models for volatility and heavy tails: with applications to financial and economic time series, volume 52. Cambridge University Press, 2013.
S. J. Koopman, A. Lucas, and M. Scharth. Predicting time-varying parameters with parameter-driven and observation-driven models. Review of Economics and Statistics, 98(1):97-110, 2016.
E. X. Li, T. A. Zha, J. Zhang, and H. Zhou. Stock-bond return correlation, bond risk premium fundamental, and fiscal-monetary policy regime. NBER Working Paper, (w27861), 2020.
A. J. Patton. On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. Journal of Financial Econometrics, 2(1):130-168, 2004.

M . Sklar. Fonctions de répartition à n dimensions et leurs marges. Université Paris 8 , 1959.

[^0]: The table reports the estimation results of the DCC MIDAS and the GAS MIDAS copula model for the dependence of Stock returns and Bond returns in comparison to the benchmark DCC model. We choose the Realized correlation with the restricted beta weighting scheme function to explain for the long term component of the dependence. The lag length are selected such that the maximum likelihood becomes insensitive to the choice of K. The values of the LLH, the AIC, the BIC show that the GAS-MIDAS Student- t copula model is preferred for the dynamic dependence of Stock returns and Bond returns. ***,**,* denote significant at $1 \%, 5 \%, 10 \%$ level.

[^1]: The table reports the estimation results of the asymmetric GAS MIDAS Student- t copula model for the dependence of Stock returns and Bond returns. We choose one explanatory variable with the restricted beta weighting scheme function to explain for the long term component of the dependence. The lag length are selected such that the maximum likelihood becomes insensitive to the choice of K. The values of the LLH, the AIC, the BIC show that Realized correlation is the most preferred for the dynamic dependence of Stock returns and Bond returns. ***,**,* denote significant at $1 \%, 5 \%, 10 \%$ level.

