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Abstract

With uncertain changes of the economic environment, macroeconomic downturns

during recessions and crises can hardly be explained by a Gaussian structural shock.

There is evidence that the distribution of macroeconomic variables is skewed and heavy

tailed. In this paper, we contribute to the literature by extending a vector autore-

gression (VAR) model to account for more realistic assumptions on the multivariate

distribution of macroeconomic variables. We propose a general class of generalized

hyperbolic skew Student’s t distribution with stochastic volatility for the innovations

in the VAR model that allows us to take into account both skewness and heavy tails.

Tools for Bayesian inference and model selection using a Gibbs sampler are provided.

In an empirical study, we present evidence of skewness and heavy tails for monthly

macroeconomic variables. The analysis also gives a clear message that skewness is a

value-added feature to VAR models with heavy tails.
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1 Introduction

Since the seminal work of Sims (1980), the vector autoregression (VAR) model has become

one of the key macroeconomic models for policy makers and forecasters, see Karlsson (2013).

The utility of the basic VAR model of Sims has been greatly enhanced by extensions allow-

ing for time-varying parameters (Primiceri, 2005; Cogley and Sargent, 2005) and stochastic

volatility (SV) (Uhlig, 1997; Clark, 2011; Clark and Ravazzolo, 2015). These can, however,

not fully account for features in the data such as heavy tailed or skewed distributions.

Acemoglu et al. (2017) gives a theoretical motivation for the non-Gaussian distribution of

macroeconomic variables and the presence of heavy tails and asymmetries is well documented

in the literature. For example, Christiano (2007) found evidence against Gaussianity by

inspecting the skewness and kurtosis properties of residuals from a Gaussian VAR model

and Fagiolo et al. (2008) find that the distribution of the output growth rates of OECD

countries can be approximated by symmetric exponential-power densities with Laplace tails

even after accounting for outliers, autocorrelation and heteroscedasticity. To model the heavy

tails, Ni and Sun (2005) propose a VAR model with a multivariate Student’s t distribution,

while Cúrdia et al. (2014) and Chib and Ramamurthy (2014) impose a similar heavy tailed

structural shock in Dynamic Stochastic General Equilibrium (DSGE) models. Karlsson

and Mazur (2020), on the other hand, propose a general class of multivariate heavy tailed

distributions which includes the normal, t and Laplace distributions as well as their mixture

for the innovations in VAR models. Stochastic volatility can also lead to a heavy tailed

marginal distribution as in Cross and Poon (2016), Chiu et al. (2017), Liu (2019) and Carriero

et al. (2020).

As noted by, among others, Cúrdia et al. (2014) the largest shocks occur during recessions,

and the skewness of the distribution should be taken into account. Skew-normal and skew-t

distributions are common choices for modelling data with skewed distributions. An early

application in the VAR literature is Panagiotelis and Smith (2008) who proposed the use of a
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multivariate skew-t distribution. A different approach to modelling skewness is represented

by Carriero et al. (2020) who apply a VAR model with conditionally symmetric innovations

and skewness induced by mean and variance shifts driven by a financial conditions indicator

and find evidence of skewness in the unemployment rate and the financial conditions indica-

tor. Similarly, Carriero et al. (2021b) account for extreme Covid-19 observations using a VAR

model with an outlier-augmented stochastic volatility. They show that the model performs

on par with a VAR with Student’s t distribution. In a univariate context, Liu (2019) esti-

mates different asymmetric and heavy tailed distributions for macroeconomic variables, even

though the symmetric Student’s t distribution is preferred for monthly data, Delle Monache

et al. (2021) model the conditional distribution of GDP using a skew-t distribution with

time-varying location, scale and shape parameters and Nakajima and Omori (2012) combine

a generalized hyperbolic skew Student’s t distribution with stochastic volatility to model

stock returns. Montes-Galdón and Ortega (2022) allow the time-varying parameter of the

skewness innovations in the structural VAR model to be driven by other economic factors.

There are thus two strands in the literature on skewness, one modelling skewness as an

unconditional phenomenon and one modelling (conditional) skewness as time-varying with

the skewness driven by economic factors. The second approach is typically motivated by

the observation that recessions are often associated with (large) negative shocks. This in

itself does not necessarily mean that skewness is time-varying. It could also be the random

occurrence of a sequence of negative shocks that drives the economy into a recessionary

state. A theoretical argument for this is given by Acemoglu et al. (2017) who show that

macroeconomic tail risk can be due to idiosyncratic microeconomic shocks to heterogeneous

sectors of the economy. In line with this our contribution is within the first stand of the

literature and we model skewness as an essentially unconditional phenomenon.

Table 1 provides some preliminary empirical support for our approach. The first panel

of Table 1 reports summary statistics for the variables in our application (see Section 4

for details on the data). We find significant skewness and excess kurtosis for most of the
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variables. As this does not necessarily imply that the innovations have skewed or heavy tailed

distributions the second panel reports on the residuals from an OLS-fit of a homoskedastic

VAR(4) model. As can be expected the amount of skewness is reduced, for the residuals

only the VIX displays significant skewness. While, on the other hand, the excess kurtosis is

now significant for all variables. There are thus signs of (unconditional) skewness as well as

fat tails in the data and consequently a need for flexible modelling tools that can capture

these features of the data.

Table 1: Summary statistics

Mean Standard deviation Skewness Kurtosis Minimum Maximum J-B test skewness J-B test kurtosis

Summary statistics of macroeconomic variables

Industrial production 0.169 0.729 -1.139 5.410 -4.434 2.377 130.329*** 739.383***

Inflation 0.321 0.326 0.184 4.431 -1.786 1.794 3.398* 496.314***

Unemployment 6.202 1.594 0.665 -0.188 3.500 10.800 44.447*** 0.795

VIX 2.924 0.329 0.482 0.487 2.081 4.207 23.366*** 6.221**

Summary statistics for the residuals from the OLS-fit of a homoskedastic VAR(4)

Industrial production 0.000 0.628 -0.125 3.627 -3.545 2.728 1.549 330.623***

Inflation 0.000 0.237 0.108 4.645 -1.149 1.501 1.164 541.791***

Unemployment 0.000 0.151 0.041 0.491 -0.568 0.502 0.171 6.275**

VIX 0.000 0.161 1.129 2.814 -0.418 0.738 127.316*** 199.363***

Table reports the summary statistics of monthly macroeconomic variables for the period 01/1970 to 12/2019 from the Federal Reserve Bank of St. Louis, see

McCracken and Ng (2016). ***,**,* denote significant at 1%, 5%, 10% level of the skewness and kurtosis components of the Jarque-Bera test.

More specifically, we contribute to the literature by extending the VAR model to account

for more realistic assumptions on the multivariate distribution of the variables. We propose

a general class of skewed distributions with heavy tails and stochastic volatility for the

innovations in the VAR. Crucially, we do this by allowing the skewness and heavy tailedness

to differ between the variables. In doing so we take the generalized hyperbolic skew Student’s

t (GHSkew-t) distribution as our starting point and we refer to this as a class of VAR models

with the GHSkew-t-SV innovation. The GHSkew-t-SV distribution can be represented as a

normal variance-mean mixture and lends itself to straightforward Bayesian inference using

a Gibbs sampler with a few Metropolis-Hastings steps. Model comparison and marginal

likelihood calculations can be done using the cross-entropy method of Chan and Eisenstat

(2018) or the Chib and Jeliazkov (2001) method.

In an application to monthly US macro data we compare the in-sample and out of sample
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forecast performance of 14 VAR models with different assumptions on the tail distribution

and stochastic volatility. We find strong support for VAR models with skewness and heavy

tails. Stochastic volatility, heavy tails and skewness all contribute to the in-sample fit. In

general, the VAR model with stochastic volatility improves the point and density out-of-

sample forecasts. Furthermore, allowing for heavy tailed distributions enhances the out-

of-sample forecast which is in agreement with current findings in the literature, see Chiu

et al. (2017) and Liu (2019). An interesting finding is that the asymmetric distribution is

more important in the VAR models with SV than that in the VAR model without SV. We

recommend that skewness as well as heavy tails should be taken into account for better

predictions and in-sample fit.

The rest of the paper is organized as follows. Section 2 introduces the GHSkew-t-SV

models. Section 3 presents the Bayesian algorithm for inference and discuss how to estimate

the marginal likelihood. Section 4 illustrates the usefulness of the proposed models for

potentially skew and heavy-tailed data using both in-sample and out-of-sample evidence.

Section 5 concludes.

2 VAR Models with skewness and heavy tails

The Student’s t distribution is a natural choice for modelling data with heavy tails and

has been used quite extensively with VAR models. The Student’s t distribution has been

extended in several different ways to allow for skewness and asymmetric behaviour. Among

these, Ferreira and Steel (2007) propose a multivariate skew-t distribution via an affine linear

transformation of independent skew-t variables while Sahu et al. (2003) use a hidden trun-

cation model to construct a multivariate skew-t distribution where the heavy tail behavior

is captured by only one parameter.

We will, however, take the GHSkew-t distribution as our starting point. It is commonly

used as it is a general class of distribution which nests the Gaussian distribution and the
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Student’s t distribution as special cases, see McNeil et al. (2015). A particularly appealing

feature is that it has a convenient representation as a variance-mean mixture of normal

distributions. That is

yt = γξt +
√
ξtzt

with ξt ∼ IG(ν
2
, δ

2
) independent of zt ∼ N (0, 1) has a GHSkew-t distribution with skewness

parameter γ, scale parameter δ and ν degrees of freedom. As we will consider models with

stochastic volatility we modify this slightly by fixing the scale at δ = ν and letting zt have

a time-varying variance, ht.
1

Using the conditional normality of yt it is straightforward, but tedious, to derive the first

few moments of yt. We have

E(yt) =
γν

ν − 2
, V (yt) =

htν

ν − 2
+

2γ2ν2

(ν − 2)2(ν − 4)
, (1)

E (yt − E(yt))
3 =

6γhtν
2

(ν − 2)2(ν − 4)
+

16γ3ν3

(ν − 2)3(ν − 4)(ν − 6)
,

E (yt − E(yt))
4 =

3h2
tν

2

(ν − 2)(ν − 4)
+

12γ2htν
3(ν + 2)

(ν − 2)3(ν − 4)(ν − 6)
+

12γ4ν4(ν + 10)

(ν − 2)4(ν − 4)(ν − 6)(ν − 8)
,

with the variance, (absolute) third and fourth moments increasing in the (absolute) skewness

(γ) and dispersion (ht) parameters and decreasing in the degrees of freedom (ν). Looking at

the standardized measures skewness and kurtosis, the variance, absolute skewness and kur-

tosis are decreasing in the degrees of freedom and approaches those of a normal distribution

as ν increases. The absolute skewness and kurtosis are increasing in the absolute value of γ

and decreasing in ht. It is also worth noting that the existence of the kth moment requires

that ν > 2k when γ 6= 0.

Another useful property of the GHSkew-t distribution is the difference in tail behavior.

Aas and Haff (2006) show that, for γ < 0, the left tail decays as |y|−ν/2−1 and is heavier

1Nakajima and Omori (2012) used a different formulation of the GHSkew-t combined with stochastic
volatility in a univariate context.
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than the right tail which decays as |y|−ν/2−1 exp(−2|γy|) and vice versa for a right skewed

distribution.

In the following we develop two multivariate extensions of the univariate GHSkew-t dis-

tribution which are suitable for use with VAR models. In doing this we take a VAR with

Gaussian volatility as the starting point as we are concerned with both the skewness and

heavy tails of the innovations in the VAR. While we are focusing on the distribution of the

innovations conditional on the volatility, the unconditional distribution is also of interest

and will be heavy tailed even with Gaussian innovations when the variance is time-varying

and stochastic as with stochastic volatility or GARCH-type conditional variances (Carriero

et al., 2020).

2.1 A VAR Model with Gaussian-SV innovations

Following Primiceri (2005) we write the VAR model with Gaussian stochastic volatility

(Gaussian-SV) as

yt = c + B1yt−1 + . . .+ Bpyt−p + ut, t = 1, . . . , T,

= Bxt + ut,

(2)

where yt is a k-dimensional vector of endogenous variables; c is a k-dimensional vector of

constants; Bj is a k × k variate matrix of regression coefficients with j = 1, . . . , p; ut is a

k-dimensional vector of reduced-form heteroskedastic innovations associated with the VAR

equations. To simplify the notation, let B = (c,B1, . . . ,Bp) be a k × (1 + kp) matrix, and

xt = (1,y
′
t−1, . . . ,y

′
t−p)

′
be (1+kp)-dimensional vector. In the VAR model with Gaussian-SV

innovations ut is given by

ut = A−1H
1/2
t εt, (3)
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where A is a k × k lower triangular matrix with ones on the diagonal that describes the

contemporaneous interaction of the endogenous variables;2 Ht is a k × k diagonal matrix

that captures the heteroskedastic volatility; εt is a k-dimensional vector of innovations that

follows a multivariate Gaussian distribution with zero mean vector and identity covariance

matrix, i.e. εt ∼ Nk(0, I). We assume that the log volatilities follow a random walk for

Ht = diag(h1t, . . . , hkt) with

log hit = log hit−1 + σiηit, i = 1, . . . , k, (4)

where ηit ∼ N (0, 1). The VAR model without stochastic volatility can be obtained by fixing

zero values of σ2 = (σ2
1, . . . , σ

2
k)
′ and assuming that log hit = log hi0 for i = 1, . . . , k and

t = 1, . . . , T .

2.2 A VAR Model with Orthogonal Skew-t-SV innovations

Next, we allow for skewness and heavy tails by defining the reduced form innovations ut as

a rotation of GHSkew-t innovations. We refer to this as the VAR with an orthogonal skew-t

innovation (OST). Given the recursive structure in A, we let the “structural” innovations,

et, be a vector of zero mean independent generalized hyperbolic skew t random variables,

ut = A−1et = A−1
((

Wt −W
)
γ + W

1/2
t H

1/2
t εt

)
, (5)

where γ = (γ1, . . . , γk)
′

is a k-dimensional vector of skewness parameters, the mixing matrix

Wt = diag(ξt) = diag(ξ1t, . . . , ξkt) is a k × k diagonal matrix, ξit follows inverse Gamma

2The triangular form of A is here mainly a device for partitioning the likelihood and is not necessary for
identifying the shocks in models with non-Gaussian innovations and/or stochastic volatility, see e.g. Lanne
et al. (2017), Carriero et al. (2021a) and Lewis (2021) on identification. While convenient, the triangular
form of A comes with the drawback that it introduces dependence on the order of the variables in the reduced
form innovations, ut, with stochastic volatility and/or the multivariate distributions we develop below. If
order dependence is an issue, A can be modelled as an unrestricted matrix using the approach of Chan et al.
(2021). We abstain from this as we want to include the Gaussian non-SV VAR, where an unrestricted A
would be unidentified, in our model comparison.
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distributions with shape parameter νi/2 and scale parameter νi/2 independent of εt, i.e.

ξit ∼ IG(νi
2
, νi

2
). For later reference we collect the degree of freedom parameters in the vector

ν = (ν1, . . . , νk)
′
. Finally W = E(Wt) = diag(µξ,1, . . . , µξ,k) = diag( ν1

ν1−2
, . . . , νk

νk−2
) centers

the innovations to have mean zero. Note that the mixing variables ξit are specific to the

”structural” innovations eit and that the reduced form innovations, uit, (except for u1t) do

not have a generalized hyperbolic skew t distribution even if the degrees of freedom are the

same across equations. By setting γ to zero we obtain the symmetric and orthogonal t

distribution (OT) used by Cúrdia et al. (2014), Clark and Ravazzolo (2015) and Chiu et al.

(2017). As usual, by letting the degree of freedom νi → ∞ for i = 1, . . . , p, the VAR with

an OT innovation becomes a VAR with Gaussian innovations.

Chiu et al. (2017) interprets the mixing matrix Wt as capturing the high-frequency shocks

in mean and volatility while the stochastic volatility accounts for the low-frequency shocks.

The data will determine whether the extreme time variation comes from the volatility shift

or from the idiosyncratic heavy tail shocks.

2.3 A VAR Model with Multi-Skew-t-SV innovations

The VAR with an OST distribution builds the distribution of the innovation terms from the

ground up in terms of the structural form innovations. This makes for a straightforward

structural interpretation but also means that the model is sensitive to the (over) identifying

assumptions, in this case the triangular structure of A and the ordering of the variables. To

partially overcome this and link the skewness and heavy tailed properties to the reduced form

innovations rather than the structural shocks we can model the reduced form innovations

directly as a correlated vector of univariate skew-t distributions. We propose a class of VAR

models with multi skew-t innovations (MST) by defining the reduced form innovations ut as

ut = (Wt −W)γ + W
1/2
t A−1H

1/2
t εt. (6)
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To aid in interpretation, note that ε̃t = A−1H
1/2
t εt ∼ Nk(0,A−1HtA

−1′).3 We then apply

individual variance-mean mixtures to each element of the vector ε̃t to allow for the different

tail behaviour of the reduced form innovations, ut, which sets this apart from the usual

(skew) multivariate t distributions. The marginal distribution of uit is thus a GHSkew-

t distribution for i = 1, . . . , k and t = 1, . . . , T . Restricting the mixing variables to be

equal for the different equations, ξ1t = . . . = ξkt, induces a common tail behaviour and the

conditional distribution of ut is a multivariate generalized hyperbolic skew Student t (Skew-

t) distribution (McNeil et al., 2015). If we in addition set γ1 = . . . = γk = 0, a multivariate

Student t (Student-t) distribution is obtained. The last special case we consider sets γi = 0

for symmetry but retains the equation specific variance mixtures for a multi Student’s t

(MT) distribution. As usual, if νi → ∞, the MT model becomes a VAR with Gaussian

stochastic volatility in spirit of Cogley and Sargent (2005) and Primiceri (2005).

2.4 Comparison of the model implied distributions

To illustrate the properties of the MST and OST distributions we focus on the bivariate

vector of innovations ut = (u1t, u2t)
′

given as follows

MST : ut = (Wt −W)γ + W
1/2
t A−1H

1/2
t εt,

u1t = (ξ1t − µξ,1)γ1 +
√
ξ1th1tε1t, (7)

u2t = (ξ2t − µξ,2)γ2 +
√
ξ2t(ρ

√
h1tε1t +

√
h2tε2t); (8)

OST : ut = A−1(Wt −W)γ + A−1W
1/2
t H

1/2
t εt,

u1t = (ξ1t − µξ,1)γ1 +
√
ξ1th1tε1t, (9)

u2t = ρu1t + (ξ2t − µξ,2)γ2 +
√
ξ2th2tε2t

= (ξ1t − µξ,1)ργ1 + (ξ2t − µξ,2)γ2 + ρ
√
ξ1th1tε1t +

√
ξ2th2tε2t, (10)

3There is order dependence in the term A−1H
1/2
t εt as the stochastic volatility is affected by the order of

the variables. While this might be seen as a problem we note that the specification is standard practice in
VAR models with stochastic volatility.
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where ρ is the free parameter in the A−1 matrix. For both the MST and OST distributions,

u1t follows a GHSkew-t distribution and the third moment of u1 follows from (1),

E
(
u3

1t

)
=

2γ1ν
2
1

(ν1 − 2)2(ν1 − 4)

(
8γ2

1ν1

(ν1 − 2)(ν1 − 6)
+ 3h1t

)
.

The distinguishing features of the MST and OST distributions can be seen by comparing (8)

and (10). In the MST distribution, u2t also follows a GHSkew-t distribution and is correlated

with u1t, however, they do not share the same mixing variable. The third moment of u2t and

cross-moments of u1t and u2t are given by,

E
(
u1tu

2
2t

)
=

1

2
ργ2h1t

ν
1/2
1 ν

3/2
2

ν2 − 2

Γ(ν1−1
2

)Γ(ν2−3
2

)

Γ(ν1
2

)Γ(ν2
2

)
, (11)

E
(
u2

1tu2t

)
=

1

2
ργ1h1t

ν
1/2
2 ν

3/2
1

ν1 − 2

Γ(ν2−1
2

)Γ(ν1−3
2

)

Γ(ν1
2

)Γ(ν2
2

)
,

E
(
u3

2t

)
=

2γ2ν
2
2

(ν2 − 2)2(ν2 − 4)

(
8γ2

2ν2

(ν2 − 2)(ν2 − 6)
+ 3(ρ2h1t + h2t)

)
.

In the OST distribution on the other hand, u2 is a linear combination of two GHSkew-t

distributions. The cross-moments of u1t and u2t and the third moment of u2t can be derived

as,

E
(
u1tu

2
2t

)
=

2γ1ρ
2ν2

1

(ν1 − 2)2(ν1 − 4)

(
8γ2

1ν1

(ν1 − 2)(ν1 − 6)
+ 3h1t

)
, (12)

E
(
u2

1tu2t

)
=

2γ1ρν
2
1

(ν1 − 2)2(ν1 − 4)

(
8γ2

1ν1

(ν1 − 2)(ν1 − 6)
+ 3h1t

)
,

E
(
u3

2t

)
= ρ3E

(
u3

1t

)
+

2γ2ν
2
2

(ν2 − 2)2(ν2 − 4)

(
8γ2

2ν2

(ν2 − 2)(ν2 − 6)
+ 3h2t

)
.

The tail dependence between u1t and u2t can be measured by the coskewness, the normal-

ized cross-moment. Intuitively, the coskewness measures how the variable is related to the
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magnitude of the other variable. For u1t and u2t we have

coskew1 =
E (u1tu

2
2t)√

V (u1t)V (u2t)
, coskew2 =

E (u2
1tu2t)

V (u1t)
√
V (u2t)

.

From (11) and (12) we see that the sign of the coskewness measures depends on the γ

parameter for the squared variable while the sign of both measures only depends on γ1 for

the OST. In the MST distribution, coskew1 (or coskew2) increases in the product of ρ and γ2

(or γ1) and the sign depends on ρ but it is quite insensitive to the changes in the volatilities

h1t and h2t. In the OST distribution, coskew1 and coskew2 increases in the skewness γ1, the

volatilities h1t and h2t and the absolute value of ρ with the sign of coskew2 depending on

ρ. The effect of the different parameters on the skewness and coskewness is illustrated in

Figure 6 in Appendix A.

Figure 1 shows the shape of the MST and OST distributions and illustrates the effect of

the volatilites on the joint distributions of u1t and u2t. For h1t = 1 and h2t = 1, we observe

that the MST only induces skewness and heavy tails in each marginal distribution and the

joint distribution reveals no tail dependence, while the OST shows stronger tail dependence.

A decrease in h1t increases the skewness of u1 in both the MST and OST distributions.

In addition, a decrease in h1t will also increase the skewness of u2, although to a smaller

degree. Changes to h2t only affects u2 in both the MST and OST distributions, see Figure

6 in Appendix A. The VAR models with MST-SV or OST-SV innovations can thus have

time-varying skewness.
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Figure 1: Emprirical contour and density plots based on 100,000 draws from the MST and
OST distributions with different dispersion parameters h1t and h2t and ρ = 0.7, γ = (−1, 2),
ν = (9, 12).
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3 Bayesian Inference

To conserve space, prior distributions, procedures for posterior inference using a Gibbs sam-

pler and model selection based on marginal likelihoods are only given for the MST-SV spec-

ification of the VAR. In most cases the modifications (simplifications) needed for the other

specifications (Gaussian, Student-t, Skew-t, orthogonal Student’s t (OT), multi Student’s t

(MT) and orthogonal skew Student’s t (OST)) are straightforward with details given in the

Online Appendix A.

3.1 Prior Distribution

Denote the set of the VAR-MST-SV model parameters and latent variables by

θ = {B, a,γ,ν,σ2, ξ1:T ,h0:T}, where a = (a2,1, a3,1, a3,2, . . . , ak,k−1)′ is the set of elements

of the lower triangular matrix A; the latent variables are ξ1:T = (ξ11, . . . , ξkT ) and h0:T =

(h10, . . . , hkT ) with h0 = (h10, . . . , hk0) as the vector of initial values for the stochastic volatil-

ities. We employ the Minnesota prior for the prior distributions of B with overall shrinkage

l1 = 0.2 and cross-variable shrinkage l2 = 0.5, see Koop and Korobilis (2010), and vague prior

distributions for other parameters. In details, the Minnesota-type prior assume a Gaussian

prior for vec(B), i.e. vec(B) ∼ N (b0,Vb0), that shrinks the regression coefficients towards

univariate random walks with a tighter prior around zero for longer lags. The prior for a

is also Gaussian, a ∼ N0.5k(k−1)(0, 10I), which implies a weak assumption of no interaction

among endogenous variables. The parameters which account for the heavy tails are endowed

with Gamma priors, νi ∼ G(2, 0.1) truncated to the range (4,100) to ensure finite second mo-

ments for i = 1, . . . , k and the skewness parameters are given a normal prior, γ ∼ Nk(0, I).

That is the prior mean of the degrees of freedom of the t-distribution is 20 and the skewness

has zero prior mean. These priors are uninformative and allow the data to choose between

the Gaussian distribution and the skew and/or heavy-tailed GHSkew-t distribution. Finally,

the prior for the variance of the shock to the volatility is σ2
i ∼ G(1

2
, 1

2Vσ
) where Vσ = 1
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which is equivalent to ±
√
σ2
i ∼ N (0, Vσ), see Kastner and Frühwirth-Schnatter (2014), this

prior is less influential in comparison to the conjugate inverse Gamma prior especially when

the true value is small. In all cases of VAR models with and without stochastic volatility

log hi0 ∼ N
(

log Σ̂i,OLS, 4
)

where Σ̂i,OLS is the estimated residual variance of a univariate

AR(p) model using the ordinary least square method, see Clark and Ravazzolo (2015).

3.2 Posterior Inference

Let Ψ be all the parameters and latent variables in θ except the ones we sample from in a

given step of the MCMC procedure. The MCMC algorithm for the VAR with MST-SV can

then be outlined as follows (see Appendix B for details).

1. Sample (b|Ψ) where b = (vec(B)
′
,γ

′
)
′

from the full conditional normal posterior.

2. Sample (a|Ψ) from the full conditional normal posterior as in Cogley and Sargent

(2005).

3. Sample (h0:T |Ψ) using the forward filter backward smoothing algorithm in Carter and

Kohn (1994).

4. Sample (σ2|Ψ) from the full conditional generalized inverse Gamma (GIG) posterior.

5. Sample (νi|Ψ) ∝ G(νi; 2, 0.1)
T∏
t=1

IG
(
ξit;

νi
2
,
νi
2

)
for i = 1, . . . , k using a Metropolis-

Hastings step with a random walk proposal.

6. Sample (ξt|Ψ) for t = 1, . . . , T , using a Metropolis-Hasting step with an independence

proposal.
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3.3 Model Selection

The marginal likelihoods of the VAR models with GHSkew-t-SV innovation require the high-

dimensional integration

p(y1:T ) =

∫
p(y1:T |θ)p(θ)dθ, (13)

where the main issue is the need to integrate out the latent variables ξ1:T and h0:T . ξ1:T can,

with exception for the MST and MST-SV models, be integrated out analytically. For h0:T

(and when needed ξ1:T ) we use importance sampling as in Chan and Eisenstat (2018). For

the integral over the static parameters θ1 = {B, a,γ,ν,σ2} we use the cross-entropy method

following Chan and Eisenstat (2018) as well as the Chib and Jeliazkov (2001) method and

find that both give reliable estimates of the marginal likelihood.

Integrating over the latent states θ2 = {ξ1:T ,h0:T} yields an estimate of the integrated

likelihood, p̂(y1:T |θ1). See Appendix C.1 for details on the integration. The cross-entropy

method is also based on importance sampling for θ1 and we use an approximation of the

ideal importance function π(θ1|y1:T ) as follows:

1. Obtain the posterior samples θ
(1)
1 , . . . ,θ

(R)
1 from the posterior density π(θ|y1:T ).

2. Given the parametric family f(θ1;λ) parameterized by parameter λ find the maximum

likelihood estimate

λ∗ = arg max
λ

1

R

R∑
r=1

log f(θ
(r)
1 ;λ).

3. Obtain new samples θ
(1)
1 , . . . ,θ

(N)
1 from f(θ1;λ∗). For each new value θ

(n)
1 , the inte-

grated likelihood p̂(y1:T |θ(n)
1 ) is estimated using an inner importance sampling loop.

Then the marginal likelihood is calculated via importance sampling

p̂IS(y1:T ) =
1

N

N∑
n=1

p̂(y1:T |θ(n)
1 )p(θ

(n)
1 )

f(θ
(n)
1 |λ∗)

.

The number of samples N is chosen such that the variance of the estimated quantity using
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important sampling is less than one. The parametric families of f(θ1;λ) are the multivariate

Gaussian distribution for (B, a,γ), independent Gamma distributions for νi and independent

Gamma distribution for σ2
i .

In the final importance sampling step we observe a large sample variance of the ratios

p̂(y1:T |θ(n)
1 )p(θ

(n)
1 )/f(θ

(n)
1 |λ∗) for the more complicated models and we cannot rule out that

the true variance is infinite. As an alternative and a check on the reliability we also use the

Chib and Jeliazkov (2001) algorithm for the integration over θ1. The method is based on

the marginal likelihood identity

p(y1:T ) =
p(y1:T |B∗,γ∗,A∗,σ2∗,ν∗)p(B∗,γ∗,A∗,σ2∗,ν∗)

p(B∗,γ∗,A∗,σ2∗,ν∗|y1:T )
,

where B∗,γ∗,A∗,σ2∗,ν∗ are the posterior means of the parameters. The prior is available

in closed form and the posterior density ordinate in the denominator is estimated using a

sequence of reduced MCMC samplers. See Appendix C.2 for details.

4 What can we learn about skewness and heavy tails

in the data?

To investigate the extent of skewness in macroeconomic data and the ability of our models to

capture this we estimate a four-variable VAR with the growth rate of industrial production,

inflation rate, unemployment rate, Chicago board options exchange’s volatility index (VIX).

We use monthly data for the period 01/1970 to 12/2019 from the Federal Reserve Bank of

St. Louis, see McCracken and Ng (2016). Industrial production is included as a growth rate

(first difference of the logarithm of the index), the inflation rate is calculated as the first

difference of the log of the CPI and the logarithm of the VIX is used. The variables enter

with p = 4 lags.
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To assess the importance of different features of the distribution of the innovations We

compare 14 different specifications: Gaussian, Student-t, Skew-t, orthogonal Student’s t

(OT), multi Student’s t (MT), orthogonal skew Student’s t (OST), multi skew Student’s t

(MST). All with and without stochastic volatility.

We first estimate the 14 VAR models with and without stochastic volatility using the

full data set in order to provide in-sample evidence. Then we perform an out-of-sample

forecasting exercise to measure the forecast accuracy of each VAR model. Details on the

numerical performance and convergence diagnostics of the MCMC algorithms are provided

in the Online Appendix B.

4.1 In-sample Analysis

The left-hand side of Figure 2 shows the growth rate of industrial production, inflation rate,

unemployment rate and the VIX. Extreme values of the variables are often observed during

recession periods based on the NBER indicators. Industrial production growth decreased by

more than 4% during the financial crisis in 2008, while the unemployment rate peaked at

10% and the VIX reached as high as 4.2. As indicated by the statistics reported in Table 1

this skewed behaviour does not necessarily imply that the distribution of the innovations is

skewed. Heavy tail, on the other hand, seems to be a robust feature of the innovations. The

observed heavy tails can be due both to heteroskedasticity and an unconditional heavy tailed

distribution. The extent to which these are present in the data is illustrated in the right hand

side of Figure 2 where we plot the posterior means of the volatilities for the Gaussian-SV and

OST-SV models. The estimated volatility tends to be larger for the Gaussian-SV indicating

that the volatility might be overestimated when not allowing for a heavy-tailed distribution,

an observation in line with the findings of, among others, Cúrdia et al. (2014) and Chiu

et al. (2017). The Gaussian-SV also gives much more erratic estimates of the volatilities for

the VIX while the estimates from the OST-SV are quite smooth. Here we see the effect of
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Table 2: Log marginal likelihood for VAR models with and without stochastic volatility

Gaussian Student-t Skew-t OT MT OST MST

Non SV
LML -217.627 -128.804 -137.211 -128.478 -125.879 -128.137 -125.268

sd (0.003) (0.005) (0.006) (0.063) (0.009) (0.021) (0.048)

SV
LML -46.919 -28.884 -27.223 -30.293 -27.403 -20.583 -18.427

sd (0.031) (0.023) (0.245) (0.042) (0.044) (0.129) (0.150)

We compare the LMLs of 14 VAR models with/without SV. We use the cross entropy methods by Chan

and Eisenstat (2018) to calculate the LMLs. We first sample 100,000 draws from the conditional posterior

distributions with 10,000 draws as burn-in. Then, all LMLs estimated using 100,000 draws from the proposal

distributions, see details in Section 3.3. The standard errors of the estimation using the batch means method

(10 batches) are reported in the brackets. Estimates of the log marginal likelihoods using the Chib and

Jeliazkov (2001) method are reported in Table 5 in Appendix C.2.

not allowing for a skewed distribution where the Gaussian-SV interprets the occasional large

positive outlier as an increase in the volatility.

Table 2 provides formal evidence on how well the different specifications captures the

features in the data in the form of log marginal likelihoods. In the class of VAR models

without SV, allowing for heavy tails leads to a substantial improvement in the marginal

likelihood while the addition of skewness is less useful. Allowing for stochastic volatility

leads to a dramatic improvement in the marginal likelihood for all seven specifications.

Allowing for heavy tails improves on the Gaussian-SV and allowing for skewness now makes

a difference with the more flexible OST and MST specifications of skewness performing best

with a log Bayes factor of 9.0 (MST) and 6.8 (OST) against the best Student-t specification.

It is interesting that skewness plays a more important role in the VAR model with SV than

in the VAR model without SV. The flexibility of the tail behaviour in the OST and MST is

important as evidenced by the relatively poor performance of the skew-t VAR models where

only one mixing variable is used to model the heavy tails.

Next, we take a closer look at the posterior distributions of the skewness and heavy tail

parameters in the best fitting models with and without stochastic volatility. Figure 3 shows

the posterior distribution of the skewness parameters and the degree of freedom parameters

in the VAR models with MST and MST-SV. Consistent with stochastic volatility inducing

heavier tails in the marginal distribution of the innovations the left column shows higher
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Figure 2: Data and estimated volatilities.

The figures on the left-hand side show the variables while the figures on the right-hand side draw the estimated mean log volatility

of the OST-SV model using a solid line (red) with their 50% credible interval. The dashed line shows the estimated mean log

volatility from the Gaussian-SV model. The shaded areas highlight the recession periods based on the NBER indicators.
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degrees of freedom for industrial production and inflation with the SV specification. The

posterior distribution of νi for unemployment and the VIX is, on the other hand, barely

affected by the addition of stochastic volatility. For industrial production and the VIX there

is clear evidence of heavy tails in the distribution and less so for inflation and unemployment.

Turning to the skewness parameters, γi, in the right column we observe a relatively large

shift to the right in the posterior distribution for industrial production when we allow for

stochastic volatility (the posterior probability of a positive γ1 increases from 0.71 to 0.85)

and a small shift for the VIX. It thus seems that stochastic volatility helps in unmasking

some of the underlying skewness in the data. For inflation and unemployment there is little

evidence of skewness. The difference in the posterior distributions between the variables

highlights the importance of a flexible specification of the distribution of the innovations.

Focusing on the model with stochastic volatility we have a heavy tailed distribution with

some skewness for the growth rate in industrial production while inflation and industrial

production appear to have normal and symmetric distributions. The VIX, finally, is heavy

tailed with a clearly positive skewness. The results are similar for the OST specifications

with and without stochastic volatility, see Figures 1 and 2 in Online Appendix C.

As the OST and MST specifications can be sensitive to the ordering of the variables we

also analyse the data with an alternative ordering for these specifications. The alternative

ordering we consider is Inflation, the VIX, Industrial production and Unemployment. It

turns out that the result is largely unaffected by the change in ordering, partly because the

A matrix is close to diagonal in our application. This is illustrated in Figures 3 and 4 in

Online Appendix D which compares the posterior distribution of the skewness and heavy

tail parameters γi and νi for the two orderings of the variables.

As a complement to the evidence on skewness in the data provided by the marginal

likelihoods and the posterior distribution of the skewness parameters Figure 4 shows the

time-varying skewness of the innovations for the MST-SV specification. Consistent with the

results in Figure 3 there is little evidence of skewness in inflation and unemployment while
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Figure 3: Posterior distribution of the heavy tail (left column) and skewness (right column)
parameters of the VAR models with MST and MST-SV.
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the posterior distribution of the skewness is separated from zero for industrial production

and the VIX. For the VIX we also observe substantial time variation in the skewness and

it is clear how the skewness is affected by the time varying volatility. Even if industrial

production and the VIX show significant degrees of skewness, the coskewness is very small

due to the small correlations between them. Hence, a large magnitude shock to industrial

production (or VIX) does not necessary induce a extreme shock to the other variable.

4.2 Out-of-sample forecasts

To assess the out-of-sample predictive accuracy of the different specifications, we conduct

a recursive forecast exercise using the 01/2000 to 12/2019 period as our evaluation sample.

We calculate the mean square forecast error (MSFE) to evaluate the point forecasts, and the

log predicitive density (LP) and continuous rank probability score (CRPS) to evaluate the

density forecasts. Details on the forecast metrics are given in Online Appendix E. As the

VAR models can be nested based on the distributional assumptions, they are divided into

two model groups without and with stochastic volatility for ease of comparison. Using the

Gaussian VAR as a benchmark in each group, we test for equal forecast accuracy using the

two-sided Diebold and Mariano (1995) test where the standard errors of the test statistics

are computed with the Newey–West estimator. We also compare the models with skew

distributions to the alternative Student-t distributions and highlight the effect of allowing

for skewness in the VAR models.

Table 3 reports on the performance of the point forecasts from the different specifications

and show the improvements in MSFE over the Gaussian VAR models. Each panel reports

the ratio of the MSFE for each variable to the MSFE of the Gaussian VAR model with

(and without) stochastic volatility. Entries less than 1 indicate that the given model is

better than the corresponding Gaussian model. In the non-stochastic volatility VAR group,

skewness and heavy tail models improve the point forecast of the growth rate of Industrial
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Figure 4: The time-varying skewness of the conditional distribution of the innovations with
their 50% credible interval in the VAR model with a MST-SV. The dashed lines illustrate
the scaled values of the time-varying volatility of the variables.
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production up to 12 months ahead but the improvement is only statistically significant

up to 6 months ahead. Heavy tails and skewness improves the forecasts of inflation and

the unemployment rate, but not significantly. For the VIX we note a slight (insignificant)

deterioration of the forecast performance with skewness and heavy tails. In the stochastic

volatility VAR group, the advantage of skewness and heavy tail models over the Gaussian

model diminishes. For inflation and the VIX a few specifications with skewness and/or

heavy tails produce significantly worse forecasts. For unemployment there is an improvement

overall when allowing for heavy tails and or skewness, but not significantly. The VAR models

with skewed distributions are better in the long term point forecast for industrial production

than their symmetric counterparts and/or the Gaussian VAR. The OST specification is

significantly better than the symmetric OT specification for the 3 and 12 month forecasts of

inflation.

Table 4 reports on the density forecasts using the relative improvements in LP over

the Gaussian VAR models as the criterion. Here entries greater than 0 indicate that the

given model is better than the Gaussian non-SV/SV model. As a result of the more careful

modelling of the distribution of the innovations the heavy tailed and skewed specifications

improve more on the density forecasts than the point forecasts. For the non-SV class of

models heavy tails and skewness improve significantly on the Gaussian model forecasts of

industrial production for all lead times and the 1 month forecasts of inflation while the

forecasts for longer lead times are significantly worse. The forecasts of unemployment tend

to be worse. For the VIX the improvement is significant for the 1 month forecasts and

all lead times for the OST and MST specification while the forecasts from the symmetric

specifications are significantly worse for longer lead times. In addition, we note a pattern

where the OST and MST specifications improve significantly on their symmetric counter-

parts. Turning to the models with stochastic volatility we note a substantial improvement

just by allowing for time varying variances. Comparing the SV models, the models with

heavy tails and skewness improve significantly on the Gaussian model for the longer horizon
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Table 3: Relative improvements in MSFE over the Gaussian VAR models

1M 3M 6M 12M 1M 3M 6M 12M
(a) Industrial Production (b) Inflation

Gaussian 0.393 0.413 0.465 0.471 0.080 0.116 0.114 0.115
Student-t 0.964* 0.967* 0.979 1.013 0.980 0.995 0.970 0.955*
Skew-t 0.973† 0.965* 0.960*† 0.981† 0.986 0.996 0.990† 1.006†
OT 0.954* 0.955* 0.975 1.002 0.988 1.019 0.998 0.972
MT 0.962* 0.961* 0.975 1.002 0.992 1.014 1.000 0.968
OST 0.961*† 0.954* 0.967† 0.988† 0.996† 1.022 1.003 0.976
MST 0.963* 0.968*† 0.979 0.998 0.994 0.996 1.011 0.989†
Gaussian-SV 0.373* 0.390* 0.448 0.477 0.080 0.116 0.108* 0.102*
Student-t-SV 1.004 1.004 1.001 1.003 0.996 0.997 0.992 0.984*
Skew-t-SV 1.007 1.007 1.001 0.994† 0.994 0.994 0.993 0.997
OT-SV 1.002 1.000 1.000 0.997 1.005 1.008* 1.005 1.002
MT-SV 1.004 1.004 1.003 0.997 1.006 1.006* 1.004 0.998
OST-SV 1.005 1.001 0.999 0.987*† 1.008*† 1.005† 1.001 0.993†
MST-SV 1.006 1.003 1.000 0.988† 1.010* 1.004 1.001 0.995

(c) Unemployment rate (d) VIX
Gaussian 0.021 0.071 0.218 0.796 0.033 0.079 0.106 0.142
Student-t 0.986 0.973 0.971 1.017 1.014 1.014 1.009 1.003
Skew-t 0.986 0.962 0.944 0.980 1.019 1.022 1.016 1.034
OT 1.002 0.976 0.963 1.000 1.014 1.018 1.005 0.989
MT 0.996 0.983 0.980 1.013 1.015 1.017 1.007 0.988
OST 0.994† 0.974 0.955 0.988 1.027* 1.016 1.006 0.996
MST 0.998 0.981 0.976 1.008 1.019 1.001 1.034 1.001
Gaussian-SV 0.021 0.070 0.214 0.798 0.032 0.078 0.105 0.138
Student-t-SV 0.992 0.991 0.996 1.013 1.004 1.010 1.013 1.020
Skew-t-SV 0.990 0.984† 0.982 0.994 1.015 1.012 1.014 1.026
OT-SV 0.998 0.993 0.990 1.002 1.008 1.014 1.016 1.015
MT-SV 0.994 0.997 0.996 1.007 1.007 1.013 1.014 1.012
OST-SV 0.997 0.993 0.989 0.996 1.022* 1.013 1.010 1.015
MST-SV 0.997 0.999 0.994 1.001 1.021* 1.012 1.008 1.025

Each panel reports the MSFE of the models relative to the Gaussian VAR model with (and without) stochastic

volatility. The relative improvements over the Gaussian models are computed as the ratio of the MSFE of alternative

specifications over the Gaussian models during 2000-2019. We perform a two-sided Diebold and Mariano (1995) test.

* denotes that the corresponding model is significantly different from the Gaussian VAR at the 10% level. † denotes

that the skew Student model significantly different from the corresponding Student at the 10% level. The entries

less than 1 indicate that the given model is better.
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forecasts of industrial production. For inflation the improvement is small and insignificant

while we observe a small and insignificant deterioration for the unemployment rate. The 1

month forecast of the VIX improves significantly for all heavy tailed and skew specifications

as well as the 3 month forecasts for the OST and MST which also improves significantly on

their symmetric counterparts. Overall we see cases with both better and worse forecasts than

the Gaussian for models with heavy tails and skewness. Most of the improvement occurs for

the forecasts of industrial production and the VIX where the in sample analysis shows clear

signs of skewness while there is little or no improvement for inflation and unemployment

where there are no signs of skewness. The density forecasts using the CRPS also report

similar results, see details in Online Appendix F.

While there is no clear advantage for the more flexible specifications that allow for skew-

ness and heavy tails in terms of the point forecasts once stochastic volatility is allowed for,

the results are different for the density forecasts. Here the results are largely in-line with the

in-sample evidence. As can be expected we see little or no improvement over the Gaussian-

SV model for inflation and the unemployment rate where the in-sample analysis suggests

that the innovation distribution is close to being Gaussian. For industrial production and

the VIX the in-sample analysis shows that innovations have a fat-tailed and skew distribu-

tion and for these variables we find a notable improvement of the density forecasts with the

OST-SV and MST-SV models.

Next, we concentrate on the effect of skewness parameters in VAR models with stochastic

volatility. Figure 5 shows the cumulative log Bayes factors of the predictive density for the

3-month forecast horizon between the OT-SV and OST-SV models, see the computational

details in Geweke and Amisano (2010). Positive values (red) mean that OST-SV predicts

better than the OT-SV. A common feature across the variables is that the OST-SV performs

better than or roughly on par with the OT-SV during recessions and crises. The OST-SV

performs better for industrial production during the 2001 recession and for unemployment

during the 2008 recession. As expected, skewness does not help with the short term forecast
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Table 4: Improvement in LP over the Gaussian VAR models

1M 3M 6M 12M 1M 3M 6M 12M
(a) Industrial Production (b) Inflation

Gaussian -1.005 -1.078 -1.153 -1.187 -0.378 -0.562 -0.626 -0.673
Student-t 0.044* 0.040* 0.040* 0.036* 0.026* 0.004 -0.016* -0.029*
Skew-t 0.031† 0.032*† 0.036* 0.040* 0.011*† -0.006† -0.023* -0.033*
OT 0.052* 0.041* 0.036* 0.031* 0.038* 0.007 -0.028* -0.061*
MT 0.049* 0.034* 0.031 0.026* 0.038* 0.008 -0.027* -0.057*
OST 0.051* 0.043* 0.043*† 0.043*† 0.038* 0.013† -0.019*† -0.050*†
MST 0.034* 0.033* 0.033* 0.036*† 0.032*† 0.019 -0.020*† -0.046*†
Gaussian-SV -0.850* -0.883* -0.984* -1.024* -0.031* -0.242* -0.243* -0.247*
Student-t-SV 0.002 0.012 0.025* 0.031* -0.001 0.007 0.016* 0.019*
Skew-t-SV 0.002 0.006 0.017* 0.030* -0.007 -0.001 0.003† 0.006†
OT-SV 0.006 0.016 0.035* 0.035* -0.001 -0.000 0.005 0.004
MT-SV 0.004 0.016 0.038* 0.041* -0.002 0.001 0.005 0.003
OST-SV 0.006 0.018 0.021* 0.027* -0.005† 0.001 0.005 0.007
MST-SV 0.001 0.012 0.028* 0.038* -0.005 0.000 0.004 0.003

(c) Unemployment rate (d) VIX
Gaussian -0.066 -0.600 -1.079 -1.599 -0.112 -0.484 -0.646 -0.774
Student-t -0.010* -0.047* -0.049* -0.049* 0.020* -0.034* -0.047* -0.055*
Skew-t -0.011* -0.037*† -0.030*† -0.017*† 0.019* -0.011*† -0.017*† -0.027*
OT -0.002* -0.015* -0.011* -0.021* 0.026* -0.023* -0.037* -0.047*
MT 0.001* -0.018* -0.017* -0.026* 0.027* -0.022* -0.035* -0.043*
OST -0.001† -0.009*† -0.002† -0.001† 0.053*† 0.041*† 0.039*† 0.029*†
MST 0.002*† -0.012*† -0.007*† -0.007† 0.039*† 0.030*† 0.027*† 0.020*†
Gaussian-SV 0.522* -0.016* -0.528* -1.257 0.327* -0.135* -0.309* -0.472*
Student-t-SV -0.006* -0.022* -0.040 -0.037 0.023* 0.002 0.000 -0.003
Skew-t-SV -0.005* -0.018 -0.031 -0.043 0.056*† 0.024 0.014 -0.010
OT-SV -0.002 -0.018 -0.031 -0.021 0.028* 0.000 -0.003 -0.006
MT-SV -0.004 -0.025 -0.037 -0.008 0.028* 0.001 -0.003 -0.003
OST-SV -0.002 -0.012 -0.022 -0.029 0.071*† 0.035† 0.017 -0.013
MST-SV -0.003 -0.025 -0.043 -0.004 0.065*† 0.034† 0.012 -0.018

Each panel reports the LP of the models relative to the Gaussian VAR model with (and without) stochastic volatility.

The relative improvements over the Gaussian models are computed as the difference between the LP of alternative

specifications and the Gaussian models during 2000-2019. We perform a two-sided Diebold and Mariano (1995) test. *

denotes that the corresponding model is significantly different from the Gaussian VAR at the 10% level. † denotes that

the skew Student model significantly different from the corresponding Student at the 10% level. The entries greater

than 0 indicate that the given model is better.
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of inflation. For the VIX the OST-SV also improves its performance during the expansion

and does significantly better overall. Hence, skewness of the distribution is a value-added

feature to the VAR model with heavy tails.
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Figure 5: Cumulative log Bayes factors of the predictive density for the 3-month ahead
forecast between the OT-SV and OST-SV models.

Positive values (red) means OST-SV predicts better and negative values (blue) means that OT-SV model does better. The

dashed lines illustrate the scaled values of the original variables. See Geweke and Amisano (2010) for details.
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5 Conclusion

Skewness and heavy tails are empirically relevant features in many application areas – not

only the macroeconomic and financial application we consider in this paper. While these

features to some extent can be accommodated or masked by time-varying heteroskedasticity

modelled as GARCH-type or stochastic volatility processes there is a need for models that

explicitly account for skewness and heavy tails in the data. We contribute to this by propos-

ing flexible skew and heavy tailed distributions with the symmetric normal distribution as

a special case. Specifically, we introduce a general class of Generalized Hyperbolic Skew

Student’s t distributions with stochastic volatility for VAR models. The stochastic represen-

tation of the GHSkew-t can be written in term of a variance-mean mixture which leads to

a straightforward implementation of a Gibbs sampler for posterior inference. We show how

model comparison and choice can be conducted using the cross entropy methods of Chan and

Eisenstat (2018) or the Chib and Jeliazkov (2001) method to calculate the model marginal

likelihood and compare the in-sample fit among different specifications. In an application to

US data we find support for VAR models with skewness and heavy tails. The VAR models

with skewness and heavy tails gives better point forecasts and density forecasts compared

to Gaussian VAR models for many, but not all, variables we model. Crucially, in sample

measures such as the marginal likelihood or the posterior distribution of the skewness pa-

rameters and degrees of freedom are informative about for which variables the forecasts can

benefit from allowing for skewness and/or heavy tails. We recommend that skewness should

be taken into account for improving forecasting performance.
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Appendix

A Properties of the bivariate MST and OST distribu-

tions

Consider the bivariate vector of innovations ut = (u1t, u2t)
′

given in Section 2.4. We analyse

how the the skewness and coskewness of bivariate MST and OST distributions depends

on the distributional parameters. Following the discussion in Section 2.4, Figure 6 shows

the skewness and coskewness of the bivariate MST and OST distributions with ρ = 0.7,

γ = (−1, 2), ν = (9, 12), ht = (1, 1). In each row we let the parameter of interest vary around

these values. In both distributions, the skewness of u1t is insensitive to the parameters of the

second variable, u2t as well as the correlation. The MST and OST distributions differ in the

distribution of u2t where the first variable can induce skewness of u2t in the OST distribution

even when γ2 = 0. In the MST distribution, the coskew1 and coskew2 oscillate mildly close

to zero while those of the OST distribution vary in a greater extent.
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Figure 6: Skewness and coskewness of the bivariate MST and OST distributions.
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B Estimation Procedure

Given the latent variables ξ1:T and the skewness parameters γ, the conditional posterior

distributions of the remaining parameters in the VAR-MST-SV model are similar to those

in the VAR-Gaussian-SV model. Hence, the MST model can be estimated using a six-step

Metropolis-within-Gibbs Markov chain Monte Carlo (MCMC) algorithm. Let Ψ be all the

parameters and latent variables in θ except the ones we sample from in a given step of the

MCMC procedure.

1. In order to sample from π(b|Ψ) where b = (vec(B)
′
,γ

′
)
′
, we rewrite the MST-SV VAR

as a multivariate linear regression,

yt = Bxt + (Wt −W)γ + W
1/2
t A−1H

1/2
t εt,

AW
−1/2
t yt = AW

−1/2
t Bxt + AW

−1/2
t (Wt −W)γ + H

1/2
t εt

= x
′

t ⊗AW
−1/2
t vec(B) + AW

−1/2
t (Wt −W)γ + H

1/2
t εt

= (x
′

t ⊗AW
−1/2
t AW

−1/2
t (Wt −W))b+ H

1/2
t εt,

ỹt = X̃tb+ H
1/2
t εt,

where ỹt = AW
−1/2
t yt and X̃t = (x

′
t ⊗ AW

−1/2
t AW

−1/2
t (Wt −W)). Then the

conditional posterior distribution of b is a conjugate Gaussian distribution

π(b|Ψ) ∼ N (b∗,V∗b),

where

V∗−1
b =V−1

b0
+

T∑
t=1

X̃
′

tH
−1
t X̃t,

b∗ =V∗b

[
V−1

b0
b0 +

T∑
t=1

X̃
′

tH
−1
t ỹt

]
.

2. In order to sample from π(a|Ψ), we follow Cogley and Sargent (2005) and use that (6)
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is a triangular model for the reduced form residuals,

Aũt = H
1/2
t εt,

where ũt = W
−1/2
t (yt−Bxt−(Wt−W)γ). This reduces to a system of linear equations

with equation i that has ũit as a dependent variable and −ũjt as independent variables

with coefficients aij for i = 2, . . . , k and j = 1, . . . , i − 1. By multiplying both sides

of the equations with h
−1/2
it , we can eliminate the effect of heteroscedasticity. Then,

draws from the conditional posterior of aij can be taken equation by equation using

the conditionally Gaussian posterior distribution (Cogley and Sargent, 2005).

3. In order to sample from π(h0:T |Ψ), we follow Kim et al. (1998); Primiceri (2005);

Del Negro and Primiceri (2015). Let ˜̃ut = Aũt, for each series i = 1, . . . , k, we

have that log ˜̃u2

it = log hit + log ε2t . Kim et al. (1998) approximated the distribution of

log(ε2t ) as log(χ2) using a mixture of 7 Gaussian components. Then using forward filter

backward smoothing algorithm in Carter and Kohn (1994), we sample log hit from its

smoothing Gaussian distribution.

4. In order to sample from π(σ2|Ψ), Equation (4) describes a random walk in the loga-

rithm of the volatility. The conditional posterior π(σ2
i |Ψ) is generalized inverse Gaus-

sian (GIG) and given by

π(σ2
i |Ψ) ∝

(
σ2
i

)−T
2 exp

(
−
∑T

t=1(log hit − log hit−1)2

2σ2
i

)(
σ2
i

)− 1
2 exp

(
− σ2

i

2Vσ

)
.

We sample σ2
i ∼ GIG(λ, ψ, χ) where λ = −0.5(T − 1), χ =

T∑
t=1

(log hi,t − log hi,t−1)2

and ψ = 1/Vσ, see Hörmann and Leydold (2014) for more details.

5. In order to sample from π(νi|Ψ) ∝ G(νi; 2, 0.1)
T∏
t=1

IG
(
ξit;

νi
2
,
νi
2

)
for i = 1, . . . , k, we

use an adaptive random walk Metropolis-Hastings algorithm to accept/reject the draw
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ν
(∗)
i = νi + ηi exp(ci), where ηi ∼ N (0, 1) and the adaptive variance ci is adjusted

automatically such that the acceptance rate is around 0.25 (Roberts and Rosenthal,

2009).

6. In order to sample π(ξt|Ψ) for t = 1, . . . , T , we apply the independent Metropolis-

Hastings algorithm to draw ξ
(∗)
it ∼ IG(αit, βit) for i = 1, . . . , k and accept with the

probability

min


1,

π(W
(∗)
t |Ψ)

k∏
i=1

IG(ξit;αit, βit)

π(Wt|Ψ)
k∏
i=1

IG(ξ
(∗)
it ;αit, βit)


where

π(Wt|Ψ) ∝
k∏
i=1

ξ
−1/2
it exp

(
−1

2
(yt −Bxt −Wtγ + Wγ)

′
Ω−1
t (yt −Bxt −Wtγ + Wγ)

)
IG
(
ξit;

νi
2
,
νi
2

)
.

where Ωt = W
1/2
t A−1HtA

−1′W
1/2
t . The proposal distribution IG(αit, βit) is taken

from Chiu et al. (2017) with αit = c
2
(νi + 1) and βit = c

2

(
νi +

˜̃u2it
hit

)
where the constant

c = 0.75 is adjusted so that the acceptance rate range from 20% to 80%.

C Details of the marginal likelihood estimation

C.1 The integrated likelihood

The integrated likelihood p(y1:T |θ1) with θ1 = {B, a,γ,ν,σ2} require a high dimensional

integral over the latent states θ2 = {ξ1:T ,h0:T},

p(y1:T |θ1) =

∫ ∫
p(y1:T |θ1, ξ1:T ,h0:T )p(ξ1:T ,h0:T |θ1)dξ1:Tdh0:T .
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In the VAR models with Gaussian, Student-t, Skew-t, OT, OST innovation, the conditional

likelihood, p(y1:T |θ1,h0:T ), can be derived in a closed form. The integrated likelihood be-

comes,

p(y1:T |θ1) =

∫
p(y1:T |θ1,h0:T )p(h0:T |θ1)dh0:T .

We propose an importance sampling algorithm to approximate the integrated likelihood

following Chan and Eisenstat (2018).

p(y1:T |θ1) ≈
L∑
l=1

1

L

p(y1:T |θ1,h
(l)
0:T )p(h

(l)
0:T |θ1)

f(h
(l)
0:T |λH)

=
L∑
l=1

1

L

p(y1:T |θ1, h̃
(l)
0:T )p(h̃

(l)
0:T |θ1)

f(h̃
(l)
0:T |λH)

,

where h̃
(l)
0:T = log h

(l)
0:T is sampled from the importance sampling distribution f(h̃0:T |λH) for

l = 1, . . . , L, and L = 100. We take the importance function f(h̃0:T |λH) to be a multivariate

normal distribution with mean and precision matrix λH = {ĥ1:T , Σ̂
−1

H } chosen as

ĥ1:T = arg max
h̃0:T

log p(y1:T |θ1, h̃0:T )p(h̃0:T |θ1),

Σ̂
−1

H = −∂
2 log p(y1:T |θ1, h̃0:T )p(h̃0:T |θ1)

∂h̃2
0:T

∣∣∣∣∣
h̃0:T=ĥ1:T

.

The VAR models with MST and MST-SV distributions do not have a closed form expres-

sion for p(y1:T |θ1,h0:T ), instead we approximate the integrated likelihood using a two-stage

importance sampling algorithm,

p(y1:T |θ1) =

∫ [∫
p(y1:T |θ1, ξ1:T ,h0:T )p(ξ1:T |h0:T ,θ1)dξ1:T

]
p(h0:T |θ1)dh0:T ,

≈
L∑
l=1

1

L

[
M∑
m=1

1

M

p(y1:T |θ1,h
(l)
0:T , ξ

(m)
1:T )p(ξ

(m)
1:T |θ1)

f(ξ
(m)
1:T |λW )

]
p(h̃

(l)
0:T |θ1)

f(h̃
(l)
0:T |λH)

where the importance function f(ξ
(m)
1:T |λW ) is the Metropolis-Hasting proposal from step 6 of

the MCMC scheme in Appendix B with M = 100 and the importance function f(h̃
(l)
0:T |λH)
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is a multivariate normal distribution with mean and precision matrix λH = {ĥ1:T , Σ̂
−1

H }

selected in a similar way to the other models. As the conditional likelihood p(y1:T |θ1,h0:T )

is not available in closed form we approximate it using a product of skew-t distribution for

the purpose of finding λH ,

p(y1:T |h̃0:T ,θ1) = p(u1:T |h̃0:T ,θ1) =
T∏
t=1

p(ut|h̃t,θ1) =
T∏
t=1

p(Aut|h̃t,θ1)/|A|,

≈
T∏
t=1

k∏
i=1

pskew−t(ẽit|µ = 0, σ2 = hit, ν = νi, γ = γi) = p̃(y1:T |h̃0:T ,θ1),

as the marginal distribution of the elements of ut is GHskew-t and the transformation with

A brings them to being close to uncorrelated. The parameters of the multivariate normal

importance function are thus chosen as

ĥ1:T = arg max
h̃0:T

log p̃(y1:T |θ1, h̃0:T )p(h̃0:T |θ1),

Σ̂
−1

H = −∂
2 log p̃(y1:T |θ1, h̃0:T )p(h̃0:T |θ1)

∂h̃2
0:T

∣∣∣∣∣
h̃0:T=ĥ1:T

.

C.2 Chib and Jeliazkov method

The Chib and Jeliazkov (2001) method is based on the basic marginal likelihood identity

p(y1:T ) =
p(y1:T |B∗,γ∗,A∗,σ2∗,ν∗)p(B∗,γ∗,A∗,σ2∗,ν∗)

p(B∗,γ∗,A∗,σ2∗,ν∗|y1:T )

where B∗, γ∗, A∗, σ2∗, ν∗ are the posterior means of the corresponding parameters.

The prior p(B∗,γ∗,A∗,σ2∗,ν∗) is available in closed form. The rest of the algorithm

works by first running a complete MCMC chain. This is used to estimate the integrated

likelihood, p(y1:T |B∗,γ∗,A∗,σ2∗,ν∗), using the technique outlined in Appendix C.1. The
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posterior is then decomposed into a sequence of conditional densities,

p(B∗,γ∗,A∗,σ2∗,ν∗|y1:T ) = p(ν∗|y1:T )p(σ2∗|ν∗,y1:T )p(A∗|σ2∗,ν∗,y1:T )

× p(B∗,γ∗|A∗,σ2∗,ν∗,y1:T )

which are evaluated in turn using reduced MCMC runs fixing the parameters at the posterior

means and thereby returning draws from conditional posteriors.

The posterior distribution of ν is not available in closed form and the elements, νi are

sampled in separate M-H steps. To evaluate p(ν∗|y1:T ) we further decompose this into

p(ν∗|y1:T ) =
∏k

i=1 p(ν
∗
i |ν∗i−1,y1:T ) where νj = (ν1, . . . , νj). Following Chib and Jeliazkov

(2001) we can then express the posterior ordinates as

p(ν∗i |ν∗i−1,y1:T ) =
E1[α(νi, ν

∗
i |ν∗i−1,y1:T )q(νi, ν

∗
i |ν∗i−1,y1:T )]

E2[α(ν∗i , νi|ν∗i−1,y1:T )]

where α(νi, ν
∗
i |ν∗i−1,y1:T ) is the acceptance ratio and q(νi, ν

∗
i |ν∗i−1,y1:T ) the proposal distri-

bution from the M-H step for a move from νi to ν∗i in step 6 of section B, the expectation E1 is

with respect to the conditional posterior p(B,γ,A,σ2,νi|ν∗i−1,y1:T ) for νj = (νj, . . . , νk) and

the expectationE2 with respect to the distribution q(ν∗i , νi|ν∗i−1,y1:T )p(B,γ,A,σ2,νi+1|ν∗i ,y1:T ).

Draws from p(B,γ,A,σ2,νi|ν∗i−1,y1:T ) are obtained by running the MCMC chain with νi−1

fixed at ν∗i−1 and draws from q(ν∗i , νi|ν∗i−1,y1:T )p(B,γ,A,σ2,νi+1|ν∗i ,y1:T ) are obtained by

running the chain with νi fixed at ν∗i and generating a proposal νi from q(ν∗i , νi|ν∗i ,y1:T ) for

each draw from the chain. p(ν∗i |ν∗i−1,y1:T ) is then estimated as

p̂(ν∗i |ν∗i−1,y1:T ) =
1
R

∑R
l=1 α(ν

(l)
i , ν

∗
i |ν∗i−1,y1:T )q(ν

(l)
i , ν

∗
i |ν∗i−1,y1:T )

1
R

∑R
j=1 α(ν∗i , ν

(j)
i |ν∗i−1,y1:T )
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Table 5: LML for VAR models with and without SV, Chib and Jeliazkov method

Gaussian Student-t Skew-t OT MT OST MST

Non SV
LML -217.634 -128.773 -137.202 -128.583 -125.844 -128.200 -125.207

sd (0.004) (0.053) (0.018) (0.200) (0.314) (0.223) (0.308)

SV
LML -46.783 -28.029 -26.053 -30.223 -27.992 -21.267 -19.515

sd (0.988) (2.218) (1.530) (1.152) (1.379) (1.274) (0.799)

We compare the LMLs of 14 VAR models with and without SV. In the Chib and Jeliazkov method, we

calculate the LMLs using 5 runs. In each run, we estimate the models with 100,000 samples. Then we

estimate the LLP with 1,000 samples, the P1-P5 with 20,000 samples and 10,000 burn-in.

To estimate p(σ2∗|ν∗,y1:T ) run the MCMC chain with ν fixed at ν∗ and calculate

p̂(σ2∗|ν∗,y1:T ) =
1

R

R∑
i=1

p(σ2∗, |B(i),γ(i),A(i),ν∗,y1:T ).

Similarly p(A∗|σ2∗,ν∗,y1:T ) is estimated by additionally fixing σ2 at σ2∗ and averaging

the full conditional posterior evaluated at A∗ over the MCMC draws of the reduced chain.

Likewise for p(B∗,γ|A∗,σ2∗,ν∗,y1:T ).

Table 5 shows estimated log marginal likelihoods using the Chib and Jeliazkov method.

While they differ slightly from the estimates using the cross-entropy method reported in

Table 2 the ranking of the models is the same and the log Bayes factors are very close. The

methods thus produce consistent results.
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