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Online Appendix

A Bayesian estimation

This section summarizes the model setup and MCMC samplers for the models where the specifica-
tion or the MCMC sampler is not discussed in detail in the paper.

A.1 Gaussian VAR with constant variance

The model is yt = Bxt + A−1Σ1/2εt with εt ∼ N (0, I) and Σ = diag(τ21 , . . . , τ
2
k ).

A.1.1 Prior distribution

The priors for B and A are as described in section 3.1. The prior for τ2i is inverse Gamma,
IG(1/2, 1/2).

A.1.2 MCMC

1. Sample B from the full conditional normal posterior.

2. Sample A from the full conditional normal posterior as in step 2 of Section 3.2, setting
ũt = yt −Bxt and Aũt = Σ1/2εt

3. Sample τ2i from the full conditional inverse Gamma posterior, IG((T +1)/2, (
∑T

t=1
˜̃u2it+1)/2)

for ˜̃ut = Aũt
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A.2 Gaussian VAR with SV

The model is yt = Bxt + A−1H
1/2
t εt with εt ∼ N (0, I) with Ht = diag(h1t, . . . , hkt) and the log

volatilities evolving as
log hit = log hit−1 + σiηit, i = 1, . . . , k,

where ηit ∼ N (0, 1).

A.2.1 Prior distribution

The priors for B, A, σ2 and h0 are as described in section 3.1.

A.2.2 MCMC

1. Sample B from the full conditional normal posterior.

2. Sample A from the full conditional normal posterior as in step 2 of Section 3.2, setting

ũt = yt −Bxt and Aũt = H
1/2
t εt

3. Sample h0:T as in step 3 of Section 3.2

4. Sample σ2 as in step 4 of Section 3.2

A.3 VAR with multivariate tdistribution and constant variance

The model is yt = Bxt +
√
ξtA

−1Σ1/2εt with εt ∼ N (0, I), Σ = diag(τ21 , . . . , τ
2
k ) and ξt ∼

IG(ν/2, ν/2).

A.3.1 Prior distribution

The priors for B and A are as described in section 3.1. The prior for τ2i is inverse Gamma,
IG(1/2, 1/2) and the prior for the single ν is G(2, 0.1) as in section 3.1.

A.3.2 MCMC

1. Sample B from the full conditional normal posterior.

2. Sample A from the full conditional normal posterior as in step 2 of section 3.2, setting
ũt = (yt −Bxt)/

√
ξt and Aũt = Σ1/2εt

3. Sample τ2i from the full conditional inverse Gamma posterior, IG((T +1)/2, (
∑T

t=1
˜̃u2it+1)/2)

for ˜̃ut = Aũt

4. The full conditional posterior for ν is proportional to G(2, 0.1)
∏T
t=1 IG(ξt, ν/2, ν/2) and is

sampled as in step 5 of section 3.2

5. Sample ξt from the full conditional inverse Gamma posterior, IG((ν+k)/2, (ν+
∑k

i=1 u
2
it/τ

2
i )/2)

for ut = A(yt −Bxt)
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A.4 VAR with multivariate tdistribution and SV

The model is yt = Bxt+
√
ξtA

−1H
1/2
t εt with εt ∼ N (0, I), ξt ∼ IG(ν/2, ν/2), Ht = diag(h1t, . . . , hkt)

and the log volatilities evolving as

log hit = log hit−1 + σiηit, i = 1, . . . , k,

where ηit ∼ N (0, 1).

A.4.1 Prior distribution

The priors for B, A, h0 and σ2 are as described in section 3.1 and the prior for the single ν is
G(2, 0.1) as in section 3.1.

A.4.2 MCMC

1. Sample B from the full conditional normal posterior.

2. Sample A from the full conditional normal posterior as in step 2 of section 3.2, setting

ũt = (yt −Bxt)/
√
ξt and Aũt = H

1/2
t εt

3. Sample h0:T as in step 3 of Section 3.2

4. Sample σ2 as in step 4 of Section 3.2

5. The full conditional posterior for ν is proportional to G(2, 0.1)
∏T
t=1 IG(ξt, ν/2, ν/2) and is

sampled as in step 5 of section 3.2

6. Sample ξt from the full conditional inverse Gamma posterior, IG((ν+k)/2, (ν+
∑k

i=1 u
2
it/hit)/2)

for ut = A(yt −Bxt)

A.5 VAR with multivariate skew-t distribution and constant variance

The model is
yt = Bxt + (ξt − µξ)γ + ξ

1/2
t A−1Σ1/2εt

with εt ∼ N (0, I), Σ = diag(τ21 , . . . , τ
2
k ) and ξt ∼ IG(ν/2, ν/2)

A.5.1 Prior distribution

The priors for B, γ and A are as described in section 3.1. The prior for τ2i is inverse Gamma,
IG(1/2, 1/2) and the prior for the single ν is G(2, 0.1) as in section 3.1.
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A.5.2 MCMC

1. Sample B and γ jointly as b = (vec(B)
′
,γ

′
)
′
. Rewrite the model as

ξ
−1/2
t Ayt = ξ

−1/2
t ABxt + ξ

−1/2
t (ξt − µξ)Aγ + Σ1/2εt (1)

=
(
ξ
−1/2
t x′t ⊗A ξ

−1/2
t (ξt − µξ)A

)(vec(B)
γ

)
+ Σ1/2εt

ỹt = X̃tb+ Σ1/2εt.

a multivariate regression model with error variance Σ where ỹt = ξ
−1/2
t Ayt and X̃t =(

ξ
−1/2
t x′t ⊗A ξ

−1/2
t (ξt − µξ)A

)
. b is then sampled from the full conjugate normal posterior.

2. Sample A from the full conditional normal posterior as in step 2 of section 3.2, setting

ũt = ξ
−1/2
t (yt −Bxt − ξ−1/2t (ξt − µξ)γ) and Aũt = Σ1/2εt

3. Sample τ2i from the full conditional inverse Gamma posterior, IG((T +1)/2, (
∑T

t=1
˜̃u2it+1)/2)

for ˜̃ut = Aũt

4. The full conditional posterior for ν is proportional to G(2, 0.1)
∏T
t=1 IG(ξt, ν/2, ν/2) and is

sampled as in step 5 of section 3.2

5. To sample from the full conditional posterior for ξt, write

ut = yt −Bxt + µξγ = ξtγ + ξ
1/2
t A−1Σ1/2εt.

ut is thus conditionally normal, ut ∼ N (ξtγ, ξtA
−1HtA

−1′) and the likelihood contribution
is

ξ
−k/2
t exp

{
− 1

2ξt
(ut − ξtγ)′A′Σ−1A(ut − ξtγ)

}
(2)

∝ ξ−k/2t exp

{
1

2

(
u′tA

′Σ−1Aut
ξt

+ ξtγ
′A′Σ−1Aγ

)}
.

With the independent inverse Gamma distribution for ξt we have conditional independence
and the full conditional posterior is generalized inverse Gaussian (GIG)

π(ξt|Ψ) ∝ ξ−k/2t exp

{
−1

2

(
q2t
ξt

+ ξtp
2
t

)}
ξ
−(ν/2+1)
t exp

{
− ν

2ξt

}
= ξλ−1t exp

{
−1

2

(
χ

ξt
+ ψξt

)}
where q2t = u′tA

′Σ−1Aut and p2t = γ ′A′Σ−1Aγ. The conditional distribution of π(ξt|Ψ) is
GIG(λ, ψ, χ) with λ = −(ν + k)/2, χ = q2t + ν and ψ = p2t .

A.6 VAR with multivariate skew-t distribution and SV

The model is
yt = Bxt + (ξt − µξ)γ + ξ

1/2
t A−1H

1/2
t εt

with εt ∼ N (0, I), ξt ∼ IG(ν/2, ν/2), Ht = diag(h1t, . . . , hkt) and the log volatilities evolving as

log hit = log hit−1 + σiηit, i = 1, . . . , k,

where ηit ∼ N (0, 1).
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A.6.1 Prior distribution

The priors for B, γ, A, h0 and σ2 are as described in section 3.1 and the prior for the single ν is
G(2, 0.1) as in section 3.1.

A.6.2 MCMC

1. Sample Sample B and γ jointly from the full conditional normal posterior. To this end, rewrite

the model as in (1) to yield ỹt = X̃tb+ H
1/2
t εt, a heteroskedastic multivariate regression.

2. Sample A from the full conditional normal posterior as in step 2 of section 3.2, setting

ũt = ξ
−1/2
t (yt −Bxt − ξ−1/2t (ξt − µξ)γ) and Aũt = H

1/2
t εt

3. Sample h0:T as in step 3 of Section 3.2

4. Sample σ2 as in step 4 of Section 3.2

5. The full conditional posterior for ν is proportional to G(2, 0.1)
∏T
t=1 IG(ξt, ν/2, ν/2) and is

sampled as in step 5 of section 3.2

(d) Sample from π(ξt|Ψ) for t = 1, . . . , T

6. To sample ξt from the full conditional posterior, write

ut = yt −Bxt + µξγ = ξtγ + ξ
1/2
t A−1H

1/2
t εt.

and replace Σ with Ht in (2). The full conditional posterior is thus generalized inverse
Gaussian, GIG(λ, ψ, χ) with λ = −(ν + k)/2, χ = q2t + ν and ψ = p2t for q2t = u′tA

′H−1t Aut
and p2t = γ ′A′H−1t Aγ.

A.7 VAR with MT distribution and constant variance

The model is
yt = Bxt + W

1/2
t A−1Σ1/2εt

with Wt = diag(ξ1t, . . . , ξkt), εt ∼ N (0, I), Σ = diag(τ21 , . . . , τ
2
k ) and ξit ∼ IG(νi/2, νi/2)

A.7.1 Prior

The priors for B, νi and A are as described in section 3.1 and the prior for τ2i is inverse Gamma,
IG(1/2, 1/2).

A.7.2 MCMC

1. Sample B from the full conditional normal posterior.

2. Sample A from the full conditional normal posterior as in step 2 of section 3.2, setting

ũt = W
−1/2
t (yt −Bxt) and Aũt = Σ1/2εt

3. Sample τ2i from the full conditional inverse Gamma posterior, IG((T +1)/2, (
∑T

t=1
˜̃u2it+1)/2)

for ˜̃ut = Aũt
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4. The full conditional posterior for νi is proportional to G(2, 0.1)
∏T
t=1 IG(ξit, νi/2, ν1/2) and is

sampled as in step 5 of section 3.2

5. Sample ξit as in step 6 of Section 3.2, with

π(Wt|Ψ) ∝
k∏
i=1

ξ
−1/2
it exp

(
−1

2
(yt −Bxt)

′
Ω−1t (yt −Bxt)

)
IG
(
ξit;

νi
2
,
νi
2

)
.

where Ωt = W
1/2
t A−1ΣA−1

′
W

1/2
t .

A.8 VAR with MT distribution and SV

The model is
yt = Bxt + W

1/2
t A−1H

1/2
t εt

with Wt = diag(ξ1t, . . . , ξkt), εt ∼ N (0, I), ξit ∼ IG(νi/2, νi/2) Ht = diag(h1t, . . . , hkt) and the log
volatilities evolving as

log hit = log hit−1 + σiηit, i = 1, . . . , k,

where ηit ∼ N (0, 1).

A.8.1 Prior

The priors for B, νi, A and h0 are as described in section 3.1.

A.8.2 MCMC

1. Sample B from the full conditional normal posterior.

2. Sample A from the full conditional normal posterior as in step 2 of section 3.2, setting

ũt = W
−1/2
t (yt −Bxt) and Aũt = H

1/2
t εt

3. Sample h0:T as in step 3 of Section 3.2

4. Sample σ2 as in step 4 of Section 3.2

5. The full conditional posterior for νi is proportional to G(2, 0.1)
∏T
t=1 IG(ξit, νi/2, ν1/2) and is

sampled as in step 5 of section 3.2

6. Sample ξit as in step 6 of Section 3.2, with

π(Wt|Ψ) ∝
k∏
i=1

ξ
−1/2
it exp

(
−1

2
(yt −Bxt)

′
Ω−1t (yt −Bxt)

)
IG
(
ξit;

νi
2
,
νi
2

)
.

where Ωt = W
1/2
t A−1HtA

−1′W
1/2
t .
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A.9 VAR with MST distribution and constant variance

The model is
yt = Bxt + (Wt −W)γ + W

1/2
t A−1Σ1/2εt

with Wt = diag(ξ1t, . . . , ξkt), W = diag(µξ,1. . . . , µξ,k), εt ∼ N (0, I), Σ = diag(τ21 , . . . , τ
2
k ) and

ξit ∼ IG(νi/2, νi/2)

A.9.1 Prior

The priors for B, γ, νi and A are as described in section 3.1 and the prior for τ2i is inverse Gamma,
IG(1/2, 1/2).

A.9.2 MCMC

1. Sample B and γ jointly from the full conditional normal posterior as in step 1 of Section 3.2,
replacing Ht with Σ.

2. Sample A as in step 2 of Section 3.2, replacing Ht with Σ.

3. Sample τ2i from the full conditional inverse Gamma posterior, IG((T +1)/2, (
∑T

t=1
˜̃u2it+1)/2)

for ˜̃ut = Aũt and ũt = W
−1/2
t (yt −Bxt − (Wt −W)γ)

4. The full conditional posterior for νi is proportional to G(2, 0.1)
∏T
t=1 IG(ξit, νi/2, ν1/2) and is

sampled as in step 5 of section 3.2

5. Sample ξit as in step 6 of Section 3.2, replacing Ht with Σ in the expression for Ωt

A.10 VAR with OT distribution and constant variance

The model is
yt = Bxt + A−1Σ1/2εt

with Wt = diag(ξ1t, . . . , ξkt), εt ∼ N (0, I), Σ = diag(τ21 , . . . , τ
2
k ) and ξit ∼ IG(νi/2, νi/2)

A.10.1 Prior

The priors for B, νi and A are as described in section 3.1 and the prior for τ2i is inverse Gamma,
IG(1/2, 1/2).

A.10.2 MCMC

1. Sample B from the full conditional normal posterior.

2. Let ut = yt −Bxt we then have a triangular equation system

Aut = W
1/2
t Σ1/2εt

with ξitτ
2
i for i = 2, . . . , k. Rows 2, . . . , k in A are then sampled from the full conditional

posteriors as in step 2 of Section 3.2.
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3. Sample τ2i from the full conditional inverse Gamma posterior, IG((T + 1)/2, (
∑T

t=1
˜̃u2it/ξit +

1)/2) for ˜̃ut = Aut

4. The full conditional posterior for νi is proportional to G(2, 0.1)
∏T
t=1 IG(ξit, νi/2, νi/2) and is

sampled as in step 4 of section 3.2

5. Sample ξit from the full conditional inverse Gamma distribution, IG((νi+˜̃u2it/τi)/2, (νi+1)/2)

for ˜̃ut = Aut

A.11 VAR with OT distribution and SV

The model is
yt = Bxt + A−1W

1/2
t H

1/2
t εt.

with Wt = diag(ξ1t, . . . , ξkt), ξit ∼ IG(νi/2, νi/2), εt ∼ N (0, I), Ht = diag(h1t, . . . , hkt) and the log
volatilities evolving as

log hit = log hit−1 + σiηit, i = 1, . . . , k,

where ηit ∼ N (0, 1).

A.11.1 Prior distribution

The priors for B, γ, νi, A, h0 and σ2 are as described in section 3.1.

A.11.2 MCMC

1. Sample B from the full conditional normal posterior.

2. Sample A as in step 2 of Section A.10.2 with ξithit as the known error variance of equations
i = 2, . . . , k of the triangular equation system.

3. Sample h0:T as in step 3 of Section 3.2 with ˜̃ut = W
−1/2
t A(yt −Bxt)

4. Sample σ2 as in step 4 of Section 3.2

5. The full conditional posterior for νi is proportional to G(2, 0.1)
∏T
t=1 IG(ξit, νi/2, ν1/2) and is

sampled as in step 5 of section 3.2

6. Sample ξit from the full conditional inverse Gamma distribution, IG((νi+˜̃u2it/hit)/2, (νi+1)/2)

for ˜̃ut = Aut

A.12 VAR with OST distribution and constant variance

The model is
yt = Bxt + A−1

(
(Wt −W)γ + W

1/2
t Σ1/2εt

)
.

with Wt = diag(ξ1t, . . . , ξkt), W = diag(µξ,1. . . . , µξ,k), εt ∼ N (0, I), Σ = diag(τ21 , . . . , τ
2
k ) and

ξit ∼ IG(νi/2, νi/2)
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A.12.1 Prior

The priors for B, γ, νi and A are as described in section 3.1 and the prior for τ2i is inverse Gamma,
IG(1/2, 1/2).

A.12.2 MCMC

1. Sample B and γ jointly as b = (vec(B)
′
,γ

′
)
′
. Rewrite the model as

Ayt =ABxt + (Wt −W)γ + W
1/2
t Σ1/2εt (3)

=
(
x′t ⊗A (Wt −W)

)(vec(B)
γ

)
+ W

1/2
t Σ1/2εt

ỹt =X̃tb+ W
1/2
t Σ1/2εt.

a heteroskedastic multivariate regression model with error variance-covariance diag(ξ1tτ
2
1 , . . . , ξktτ

2
k )

where ỹt = Ayt and X̃t =
(
x′t ⊗A (Wt −W)

)
. b is then sampled from the full conditional

normal posterior.

2. Let ut = yt −Bxt we then have a triangular equation system

Aut = (Wt −W)γ + W
1/2
t Σ1/2εt

with ũit = uit − (ξit − µξ,i)γi as dependent variable, (−u1,t, . . . ,−ui−1,t) as explanatory vari-
ables and know variance ξitτ

2
i for i = 2, . . . , k. Rows 2, . . . , k in A are then sampled from the

full conditional posteriors.

3. Sample τ2i from the full conditional inverse Gamma posterior, IG((T + 1)/2, (
∑T

t=1
˜̃u2it/ξit +

1)/2) for ˜̃ut = Aut − (Wt −W)γ

4. The full conditional posterior for νi is proportional to G(2, 0.1)
∏T
t=1 IG(ξit, νi/2, νi/2) and is

sampled as in step 4 of section 3.2

5. To sample from the full conditional distribution for ξit write

ut = A (yt −Bxt) + Wγ = Wtγ + W
1/2
t Σ1/2εt.

That is, the conditional distribution of ut is normal, ut ∼ N (Wtγ,WtΣ) and the likelihood
contribution is

|Wt| exp

(
−1

2
(ut −Wtγ)′Σ−1W−1

t (ut −Wtγ)

)
(4)

with

(ut −Wtγ)′Σ−1W−1
t (ut −Wtγ) =

k∑
i=1

u2it/τ
2
i

ξit
− 2

k∑
i=1

uitγi
τ2i

+
k∑
i=1

γ2i
τ2i
ξit.

With the independent inverse Gamma distribution for ξit we have conditional independence
and the full conditional posterior is generalized inverse Gaussian (GIG),

π(ξit|Ψ) ∝ ξ−1/2it exp

{
−1

2

(
q2it
ξit

+ ξitp
2
it

)}
ξ
−(νi/2+1)
it exp

{
− νi

2ξit

}
= ξλ−1it exp

{
−1

2

(
χ

ξit
+ ψξit

)}
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for q2it = u2it/τ
2
i , p2it = γ2i /τ

2
i , λ = −(νi+1)/2, χ = q2it+νi and ψ = p2it. That is a GIG(λ, ψ, χ)

distribution.

A.13 VAR with OST distribution and SV

The model is
yt = Bxt + A−1

(
(Wt −W)γ + W

1/2
t H

1/2
t εt

)
.

with Wt = diag(ξ1t, . . . , ξkt), ξit ∼ IG(νi/2, νi/2), W = diag(µξ,1. . . . , µξ,k), εt ∼ N (0, I), Ht =
diag(h1t, . . . , hkt) and the log volatilities evolving as

log hit = log hit−1 + σiηit, i = 1, . . . , k,

where ηit ∼ N (0, 1).

A.13.1 Prior distribution

The priors for B, γ, νi, A, h0 and σ2 are as described in section 3.1.

A.13.2 MCMC

1. Sample Sample B and γ jointly from the full conditional normal posterior. To this end,

rewrite the model as in (3) to yield ỹt = X̃tb + W
1/2
t H

1/2
t εt, a heteroskedastic multivariate

regression.

2. Sample A as in step 2 of Section A.12.2 with ξith
2
it as the known error variance of equations

i = 2, . . . , k of the triangular equation system.

3. Sample h0:T as in step 3 of Section 3.2 with ˜̃ut = W
−1/2
t

[
A(yt −Bxt)− (Wt −W)γ

]
4. Sample σ2 as in step 4 of Section 3.2

5. The full conditional posterior for νi is proportional to G(2, 0.1)
∏T
t=1 IG(ξit, νi/2, ν1/2) and is

sampled as in step 5 of section 3.2

6. Sample ξit as in step 5 of Section A.12.2 with q2it = u2it/hit and p2it = γ2i /hit
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B Numerical Performance and Convergence

As the models we propose are relatively complicated with many latent variables the numerical
performance of the MCMC algorithm and it’s convergence properties are of interest. Here, we
briefly report on these issues. In Table 1 we report on the run times for the MCMC algorithms
relative to the base case of the VAR with Gaussian stochastic volatility. The Gaussian, Student-t
and Skew-t without SV makes use of conditional conjugacy. For the OST model, the simulation
of the generalized inverse Gaussian distribution for the mixing variables, ξit, is relatively time
consuming.

Table 1: Relative time for the MCMC algorithm for the different VAR models

Gaussian Student-t Skew-t OT MT OST MST

Non SV 0.64 0.67 1.26 0.73 1.30 3.30 1.35
SV 1.00 1.08 1.67 1.14 1.75 3.83 1.78

Times relative to the Gaussian VAR with stochastic volatility. For the Gaussian VAR

with stochastic volatility 10 000 draws takes about 1 minute on an Intel Core i7-8700

processor (8 cores at 3.2 GHz).

Regarding converge, Table 2 reports on the convergence of the slowest mixing parameters , σi,
the standard deviations of the innovations to the log volatilites, γi, the skewness parameters, and
νi, the degrees of freedom, for the MST-SV and OST-SV models. The table shows the posterior
mean and standard deviations along with the upper confidence 95% limit of the Gelman and Rubin
(1992) R̂ statistic. In no case do the statistics indicate a lack of convergence.

Table 2: Convergence diagnostic of the MST-SV model and the OST-SV model for the parameters
σ, γ and ν

Mean Sd. R̂ Mean Sd. R̂

MST-SV OST-SV
σ1 0.015 0.015 1.034 0.047 0.045 1.065
σ2 0.059 0.024 1.001 0.062 0.025 1.002
σ3 0.002 0.002 1.047 0.002 0.001 1.004
σ4 0.003 0.002 1.006 0.003 0.002 1.005
γ1 0.114 0.148 1.049 0.519 0.499 1.065
γ2 0.029 0.087 1.001 0.029 0.092 1.001
γ3 0.015 0.074 1.003 -0.003 0.071 1.001
γ4 0.123 0.036 1.006 0.122 0.037 1.002
ν1 10.579 5.805 1.054 23.593 15.475 1.055
ν2 27.455 14.343 1.001 30.536 14.427 1.004
ν3 39.589 16.200 1.006 37.701 14.801 1.003
ν4 11.028 3.012 1.010 10.968 3.027 1.005

The table shows the estimation of the parameters σ, γ, ν, and the Gelman and Rubin’s

convergence statistics (R̂ statistics, Gelman and Rubin (1992)). We calculate the R̂ based

on five chains of 100,000 posterior samples with 10,000 draws as burn-in, and thinned at

every 10 iterations. The 95% upper confidence limits statistics of R̂ are reported and the

values are close to 1 indicate the convergence.
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C Posterior comparison

Figures 1 and 2 compares the posterior distribution of the skewness, γi, and heavy tail, νi parameters
for the MST and OST specifications with and without stochastic volatilities.
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Figure 1: The plots show the posterior samples of the heavy tail and skewness parameters of the
VAR models with MST and OST innovations.
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Figure 2: The plots show the posterior samples of the heavy tail and skewness parameters of the
the VAR models with MST-SV and OST-SV innovations.
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D Sensitivity to the order of variables

Figures 3 and 4 compare the posterior distribution of the skewness (γi) and heavy tail (νi) for two
orderings of the variables for the MST and OST specifications where the results may be sensitive
to the ordering. The orderings are the original order used in the paper; Industrial production,
Inflation, Unemployment, VIX, and the alternative ordering; Inflation, VIX, Industrial production,
Unemployment. The posterior distribution is largely unaffected by the ordering.
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Figure 3: Posterior distribution of the heavy tail (left column) and skewness (right column) param-
eters of the VAR models with MST-SV. The order PIUV stands for Industrial production, Inflation,
Unemployment, VIX and The order IVPU stands for Inflation, VIX, Industrial production, Unem-
ployment.

14



0.00

0.01

0.02

0.03

0.04

20 40 60 80
ν

In
du

st
ria

l p
ro

du
ct

io
n

Models

OST−SV−IVPU

OST−SV−PIUV

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5 2.0
γ

In
du

st
ria

l p
ro

du
ct

io
n

Models

OST−SV−IVPU

OST−SV−PIUV

0.00

0.01

0.02

0.03

0 25 50 75
ν

In
fla

tio
n Models

OST−SV−IVPU

OST−SV−PIUV

0

1

2

3

4

5

−0.2 0.0 0.2
γ

In
fla

tio
n Models

OST−SV−IVPU

OST−SV−PIUV

0.00

0.01

0.02

0.03

0 25 50 75
ν

U
ne

m
pl

oy
m

en
t

Models

OST−SV−IVPU

OST−SV−PIUV

0

2

4

6

−0.3 −0.2 −0.1 0.0 0.1 0.2
γ

U
ne

m
pl

oy
m

en
t

Models

OST−SV−IVPU

OST−SV−PIUV

0.00

0.05

0.10

0.15

5 10 15 20
ν

V
IX

Models

OST−SV−IVPU

OST−SV−PIUV

0

3

6

9

12

0.05 0.10 0.15 0.20 0.25
γ

V
IX

Models

OST−SV−IVPU

OST−SV−PIUV

Figure 4: Posterior distribution of the heavy tail (left column) and skewness (right column) param-
eters of the VAR models with OST-SV. The order PIUV stands for Industrial production, Inflation,
Unemployment, VIX and The order IVPU stands for Inflation, VIX, Industrial production, Unem-
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E Forecast metrics

We compare the forecast accuracy using the mean square forecast error (MSFE) for the point
forecast, the log predictive density (LP), and the continuous rank probability score (CRPS) of the
posterior predictive distribution for the density forecast.

Let T0 be the last observation in the first estimation sample and T1 the last observation on
variable i. The MSFE of variable i at h step ahead, for h = 1, . . . ,H, is then obtained as,

MSFEi,h =
1

T1 − T0 − h+ 1

T1−h∑
t=T0

(
ȳi,t+h|t − yoi,t+h

)2
,

where ȳi,t+h|t is the mean of the posterior predictive samples using all data up to time t and yoi,t+h is
the observed outcome of variable i at h steps ahead. The model with a smaller MSFE is preferred.

The LP of the posterior predictive distribution is computed as,

LPi,h =
1

T1 − T0 − h+ 1

T1−h∑
t=T0

[
log p(yoi,t+h|y1:t)

]

=
1

T1 − T0 − h+ 1

T1−h∑
t=T0

[
log

∫
θ
p(yoi,t+h|θ,y1:t)p(θ|y1:t)dθ

]

where p(yoi,t+h|y1:t) is the h-step ahead posterior predictive density function evaluated at the real-
ization of the variable. Following Andersson and Karlsson (2008), the LP of the posterior predictive
distribution is computed using the Rao-Blackwellization idea which is more stable than the kernel
density estimator for extreme observations. In particular, it is evaluated as,

LPi,h =
1

T1 − T0 − h+ 1

T1−h∑
t=T0

[
log

R∑
r=1

1

R
p(yoi,t+h|θ(r),y1:t)

]

where θ(1), . . . ,θ(R) are the posterior samples of the VAR model. The possibly high dimensional
integral over intermediate observations implicit in p(yoi,t+h|θ

(r),y1:t) can be approximated by the

Monte Carlo approach. For each sample from the posterior we simulate a new path y
(r)
(t+1):(t+h−1)|t

using the data generating process for the model and calculate p(yi,t+h|t|θ(r),y1:t,y
(r)
(t+1):(t+h−1)|t).

A higher LP value indicates a better density forecasting performance of the model.

The continuous rank probability score (CRPS) is also commonly used to rank the density fore-
casts. CRPS is obtained as the quadratic difference between the predictive cumulative distribution
function and the empirical distribution of the variable (Gneiting and Raftery, 2007). As Clark and
Ravazzolo (2015) noted the CRPS is less sensitive to outliers than the LP and rewards more for
values of the predictive density that are close to the outcome.

CRPSi,h =
1

T1 − T0 − h+ 1

T1−h∑
t=T0

[
− Ef

∣∣yi,t+h|t − yoi,t+h∣∣+ 0.5Ef

∣∣∣yi,t+h|t − y′

i,t+h|t

∣∣∣ ],
where f is the predictive density of the variable yi,t+h|t, and (yi,t+h|t, y

′

i,t+h|t) are independent
random draws from the predictive density f . We apply the Monte Carlo method to simulate 10,000
draws from the predictive density f and compute the expectation.
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F Forecast evaluation

Table 3 reports the relative improvements in CRPS over the Gaussian VAR models where entries
greater than 0 indicate that the given model is better. We confirm the previous conclusion by
comparing the CRPS among models. However, the effect of heavy tails and skewness is smaller
as the CRPS is less sensitive to outliers (Clark and Ravazzolo, 2015). Focusing on the models
with stochastic volatility, skewness and heavy tailed specifications improve significantly on the
Gaussian model 6 and 12 month forecast of industrial production and the 12 month forecast for the
unemployment rate. For inflation and the VIX the forecast performance differs very little between
the specifications.

Table 3: Improvement in CRPS over the Gaussian VAR models

1M 3M 6M 12M 1M 3M 6M 12M

(a) Industrial Production (c) Unemployment rate

Gaussian -0.344 -0.357 -0.382 -0.391 -0.172 -0.204 -0.212 -0.220
Student-t 0.008* 0.006* 0.007* 0.003 0.003* -0.001 -0.003* -0.004*
Skew-t 0.007*† 0.007* 0.010*† 0.008*† 0.002* 0.000† -0.001† -0.003*
OT 0.009* 0.008* 0.005* 0.002 0.003* -0.002 -0.005* -0.010*
MT 0.009* 0.006* 0.004 0.001 0.003* -0.001 -0.005* -0.009*
OST 0.009* 0.008* 0.007*† 0.007*† 0.003* -0.001 -0.004*† -0.008*†
MST 0.008* 0.005* 0.005 0.004*† 0.003* 0.000 -0.004* -0.008*†
Gaussian-SV -0.317* -0.324* -0.351* -0.366 -0.146* -0.174* -0.171* -0.171*
Student-t-SV 0.001 0.001 0.004 0.006 0.000 0.001 0.002* 0.004*
Skew-t-SV -0.000 0.000 0.004* 0.008* 0.000 0.000 0.001 0.001†
OT-SV -0.001 0.001 0.003 0.007 -0.000 -0.000 0.000 0.001*
MT-SV -0.000 0.001 0.003 0.008 -0.000 -0.000 0.000 0.001*
OST-SV -0.000 0.002 0.003* 0.008* -0.001† -0.000 0.000 0.001*
MST-SV -0.000 0.001 0.004* 0.010* -0.000 -0.000 0.001 0.001*

(b) Inflation (d) VIX

Gaussian -0.114 -0.196 -0.321 -0.562 -0.123 -0.185 -0.217 -0.250
Student-t -0.002* -0.008* -0.013* -0.021* -0.000 -0.005* -0.008* -0.009*
Skew-t -0.002*† -0.007*† -0.007*† -0.006† 0.001*† -0.001† -0.003*† -0.005*
OT -0.001* -0.002* -0.003 -0.009* 0.000 -0.003* -0.006* -0.008
MT -0.001* -0.003* -0.004* -0.012* 0.000 -0.003* -0.006* -0.007
OST -0.001*† -0.001† 0.001† -0.001† 0.003*† 0.004*† 0.004*† 0.004*†
MST -0.000* -0.002*† -0.001† -0.004† 0.002*† 0.003*† 0.002† 0.002†
Gaussian-SV -0.081* -0.141* -0.232* -0.446* -0.096* -0.153* -0.181* -0.214*
Student-t-SV 0.000 -0.001 -0.002 -0.005 0.001* 0.000 0.001 -0.001
Skew-t-SV 0.000 -0.000† -0.001 -0.003 0.001 -0.000 -0.000 -0.003
OT-SV -0.000 -0.001 -0.002 -0.003 0.001* 0.000 0.000 -0.001
MT-SV 0.000 -0.001 -0.002 -0.004 0.001* 0.000 0.000 -0.000
OST-SV -0.000 -0.000 -0.002 -0.005 0.000 -0.000 -0.001 -0.003
MST-SV -0.000 -0.001* -0.003 -0.007 0.000 -0.001 -0.001 -0.004

Each panel reports the CRPS of the models relative to the Gaussian VAR model with (and without) stochastic volatility. The

relative improvements over the Gaussian models are computed as the difference between the CRPS of alternative specifications

and the Gaussian models during 2000-2019. We perform a two-sided Diebold and Mariano (1995) test. * denotes that the

corresponding model is significantly different from the Gaussian VAR at the 10% level. † denotes that the skew Student model

significantly different from the corresponding Student at the 10% level. The entries greater than 0 indicate that the given model

is better.

Figure 5 shows the cumulative log Bayes factors of the predictive density for the 3-month
forecast horizon between the MST-SV and OST-SV models. As the OST-SV model allows the co-
movement of variables in extreme events, the out-of-sample forecast during the 2008-2009 recessions
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is better than the MST-SV model. It suggests that an appropriate distribution of the VAR model’s
innovations needs to take into account not only the heavy tails and skewness of each marginal but
also the joint co-movement of variables which is helpful during extreme events.
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Figure 5: Cumulative log Bayes factors of the predictive density for the 3-month ahead forecast
between the MST-SV and OST-SV models.

Positive values (red) means the MST-SV predicts better and negative values (blue) means that the OST-SV model does better.

The dashed lines illustrate the scaled values of the original variables. See Geweke and Amisano (2010) for details.
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