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Motivation

The Gaussian vector autoregression (VAR) model has become one of the key

macroeconomic models for policy makers and forecasters (Karlsson, 2013).

However, macroeconomic downturns during recessions and crisis can hardly be

explained by a Gaussian structural shock (Mishkin, 2011; Acemoglu et al., 2017).

There are several proposals for extending the Gaussian VAR model.

VAR models with Stochastic volatility (Uhlig, 1997; Clark, 2011).

VAR models with Time varying parameter (Primiceri, 2005; Cogley and Sargent, 2005).

VAR models with Heavy tail distributions (Clark and Ravazzolo, 2015; Chiu et al., 2017;

Liu, 2019).
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Related literature & Research questions

The non-normality and fat tail characteristics of macroeconomic variables have

been documented in many studies.

Fagiolo et al. (2008) analyze the output growth rates of OECD countries.

Ascari et al. (2015) shows findings on U.S. consumption, investment, employment,

inflation and real wage.

Christiano (2007) found an evidence against the Gaussian assumption of an estimated

VAR by inspecting the skewness and kurtosis properties of residuals.

Ni and Sun (2005) propose the VAR models with multivariate Student-t distribution

(also Cúrdia et al. (2014) and Chib and Ramamurthy (2014)).

Panagiotelis and Smith (2008) first come up with an application of multivariate skew-t

VAR models.

Liu (2019) estimates different fat tail and asymmetry distributions for macroeconomic

variables, even though, the symmetric Student-t distribution is preferred among

proposals for monthly data.

Cross and Poon (2016), Chiu et al. (2017) and Liu (2019) show that ignoring the

stochastic volatility of the shocks will overestimate the fatness of the tail distribution.

There is a gap in the literature on the combination of heavy tails, skewness and

stochastic volatility for the VAR model.
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Preliminary results

We propose a general class of Generalized Hyperbolic Skew Student’s-t

distribution with stochastic volatility (Skew-t.SV) VAR.

In general, fat tail models improve in-sample goodness of fit and out-of-sample

forecast.

Slight evidence of skewness.

Ignoring the stochastic volatility of the shocks will overestimate the fatness of the

tail distribution and underestimate the skewness.
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Gaussian VAR Models

The Gaussian VAR model with stochastic volatility (Gaussian.SV) is discussed as

following,

yt = c + B1yt−1 + . . .+ Bpyt−p + A−1H
1/2
t εt , (1)

where

yt is a k-dimensional vector of endogenous variables that yt = [y1t , . . . , ykt ]
′
;

c is a k-dimensional vector of constant;

Bj a k x k matrix of regression coefficients for j = 1, . . . , p;

A is a k x k lower triangular matrix that describes the contemporaneous

interaction of the endogenous variables;

Ht is a k x k diagonal matrix that captures the heteroskedastic volatility; the

vector of Gaussian shock εt ∼ Normal(0, Ik ). And

log hit = log hit−1 + σiηit (2)

for i = 1, . . . , k and ηit ∼ Normal(0, 1).
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Gaussian VAR Models

The Gaussian VAR model with stochastic volatility (Gaussian.SV) is discussed as

following,

yt = Bxt + ut , (3)

where

B = [c,B1, . . . ,Bp ] is a k x (1+kp) dimensional matrix,

xt = [1, y
′
t−1, . . . , y

′
t−p ]

′
is (1+kp) dimensional vector

ut = A−1H
1/2
t εt is a k-dimensional vector of heteroskedastic shocks associated

with the VAR equations.

Aut = H
1/2
t εt is a k-dimensional vector of orthogonal shocks.
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Orthogonal Skew-t (OST) VAR Models

Following Cúrdia et al. (2014), Clark and Ravazzolo (2015), and Chiu et al. (2017),

we account for the asymmetric heteroskedastic shocks in the orthogonal residuals

Aut = A(yt − Bxt) of the VAR models by assuming that

ε̃t = Aut = A(yt − Bxt) = (Wt −W)γ + W
1/2
t H

1/2
t εt , (4)

where

the mixing variable Wt = diag(ξ1t , . . . , ξkt) is a diagonal matrix that

ξit ∼ InvGamma( νi
2
, νi

2
) and νi is the degree of freedom for i = 1, . . . , k and

t = 1, . . . ,T .

γ = [γ1, . . . , γk ]
′

is a k-dimensional vector of the skewness parameters.

Equation (4) represents the marginal distribution of the orthogonal shock Aut as

a vector of independent univariate generalized hyperbolic skew Student-t

distributions, see McNeil et al. (2015).

Orthogonal Student-t VAR model and Gaussian VAR model as special cases.
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Multi-Skew-t (MST) VAR Models

We propose a class of the multi-Skew-t (MST) VAR model by assuming the residuals

ut = (yt − Bxt) as,

ut = (Wt −W)γ + W
1/2
t A−1H

1/2
t εt . (5)

Comparing to the OST VAR model, the MST VAR model imposes the fat tail

and skewness of the structure shock directly in each VAR equation rather than in

the idiosyncratic shock.

The tail co-movement can be defined by restricting that ξ1t = . . . = ξkt so the

marginal distribution of ut is a multivariate generalized hyperbolic skew Student-t

(Skew-t) distribution as a special case, see McNeil et al. (2015).

It becomes a multivariate Student-t (Student-t) distribution when ξ1t = . . . = ξkt

and γ1 = . . . = γk = 0.
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Comparison of the model implied distributions
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Figure: The density plots of the MST and OST distributions with different scale parameters h1t

and h2t . It is assumed that ρ = 0.5, γ = (1, 2), and ν = (9, 12).
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Comparison of the model implied distributions

Figure: The density plots of the MST and OST distributions with different scale parameters h1t

and h2t . It is assumed that ρ = 0.5, γ = (1, 2), and ν = (9, 12).
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Bayesian Inference

The set of the VAR-MST-SV model parameters θ = {B, a,γ,ν,σ2, ξ1:T , h0:T }.

We use the Minnesota-style priors for the coefficients B, see Koop and Korobilis

(2010), and vague prior distributions for other parameters.

vec(B) ∼ N (b0,Vb0
)

a ∼ N (0k , 10Ik )

γ ∼ N (0k , Ik )

ν ∼ Gamma(2, 0.1)

σ2
i ∼ Gamma(1/2, 1/2Vσ)

log hi0 ∼ N
(

log Σ̂i,OLS , 4
)
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Gibb sampler scheme θ = {B, a,γ,ν,σ2, ξ1:T , h0:T}

Let’s Ψ be a set of conditional parameters except the one that we sample from.

MST VAR Model: yt = Bxt + (Wt −W)γ + W
1/2
t A−1H

1/2
t εt .

Sample π(b|Ψ) where b = (B
′
,γ

′
)
′
.

yt = Bxt + (Wt −W)γ + W
1/2
t A−1H

1/2
t εt ,

AW
−1/2
t yt = AW

−1/2
t Bxt + AW

−1/2
t (Wt −W)γ + H

1/2
t εt

= x
′
t ⊗ AW

−1/2
t

~(B) + AW
−1/2
t (Wt −W)γ + H

1/2
t εt

= (x
′
t ⊗ AW

−1/2
t AW

−1/2
t (Wt −W))b + H

1/2
t εt ,

ỹt = X̃tb + H
1/2
t εt ,

π(b|Ψ) ∼ N (b∗,V∗b )
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Gibb sampler scheme θ = {B, a,γ,ν,σ2, ξ1:T , h0:T}

MST VAR Model: yt = Bxt + (Wt −W)γ + W
1/2
t A−1H

1/2
t εt .

Sample π(a|Ψ) following Cogley and Sargent (2005) and use that (5) is a

triangular model for the reduced form residuals,

Aũt = H
1/2
t εt ,

where ũt = W
−1/2
t (yt − Bxt − (Wt −W)γ).

Sample π(h0,H1:T |Ψ) and π(σ2|Ψ) = π(σ2|h0,H1:T ),

Let ˜̃ut = Aũt , for each series i = 1, . . . , k, we have that log ˜̃u2
it = log hit + log ε2

t .

Kim et al. (1998) approximated the distribution of log(ε2
t ) as log(χ2) using a

mixture of 7 Gaussian components.
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Gibb sampler scheme θ = {B, a,γ,ν,σ2, ξ1:T , h0:T}

MST VAR Model: yt = Bxt + (Wt −W)γ + W
1/2
t A−1H

1/2
t εt .

Sample π(νi |Ψ) ∝ G(νi ; 2, 0.1)
T∏
t=1

IG
(
ξit ;

νi

2
,
νi

2

)
using RW Metropolis

Hastings.

Sample π(Wt |Ψ) for t = 1, . . . ,T using the independent Metropolis Hastings.
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Empirical illustration

Data: Industrial Production, Inflation rate, Unemployment rate, Chicago board

options exchange’s volatility index (VIX).

The data is collected at monthly frequency from 01/1970 - 12/2019 from the

Federal Reserve Bank of St. Louis, see McCracken and Ng (2016).

The growth changes are calculated using the first difference of the logarithm of

Industrial Production Index and CPI. The VIX is calculated in the log scale.

14 VAR models (p=4 lags) w/wo SV: Gaussian, Student-t, hyperbolic skew

Student-t (Skew-t), Orthogonal Student-t (oStudent-t), Orthogonal Hyperbolic

skew Student-t (OST), multi-Student-t (mStudent-t), multi-hyperbolic skew

Student-t (MST).

146 recursive forecast during 2007-2019.
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Data
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Figure: The plots show the growth of industrial production, inflation rate, unemployment rate, VIX
in comparison to their estimated stochastic volatility from the OST.SV model.

The figures on the left-hand side show the growth changes of the variables while the figures on the right-hand side draw the estimated

mean log volatility of the OST.SV model in red color with their 50% credible interval. The dash line shows the estimated mean log

volatility from the Gaussian.SV model. The shaded areas highlight the recession periods based on the NBER indicators.
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Numerical Performance and Convergence

Table: Relative time for the MCMC algorithm for the different VAR models

Gaussian Student-t Skew-t OT MT OST MST

Non SV 0.64 0.67 1.26 0.73 1.30 3.30 1.35

SV 1.00 1.08 1.67 1.14 1.75 3.83 1.78

Times relative to the Gaussian VAR with stochastic volatility. For the Gaussian VAR with stochastic

volatility 10 000 draws takes about 1 minute on an Intel Core i7-8700 processor (8 cores at 3.2 GHz).

Table: Convergence diagnostic of the MST-SV model and the OST-SV model for the parameters
σ, γ and ν

Mean Sd. R̂ Mean Sd. R̂

MST-SV OST-SV

σ1 0.017 0.016 1.034 0.043 0.042 1.065

σ2 0.060 0.023 1.001 0.061 0.024 1.002

σ3 0.002 0.002 1.047 0.002 0.001 1.004

σ4 0.003 0.002 1.006 0.003 0.002 1.005

γ1 0.128 0.160 1.049 0.464 0.480 1.065

γ2 0.028 0.091 1.001 0.027 0.090 1.001

γ3 0.011 0.072 1.003 -0.003 0.074 1.001

γ4 0.121 0.036 1.006 0.122 0.037 1.002

ν1 11.312 6.041 1.054 21.480 14.264 1.055

ν2 28.721 14.287 1.001 30.416 15.279 1.004

ν3 38.397 15.827 1.006 39.466 16.119 1.003

ν4 10.926 2.935 1.010 10.953 2.967 1.005

The table shows the estimation of the parameters σ, γ, ν, and the Gelman and Rubin’s convergence statistics (R̂ statistics, ?). We calculate

the R̂ based on five chains of 100,000 posterior samples with 10,000 draws as burn-in, and thinned at every 10 iterations. The 95% upper

confidence limits statistics of R̂ are reported and the values are close to 1 indicate the convergence.

Hoang Nguyen Vector autoregression models with skewness and heavy tails



19/37

Outline VAR Models Bayesian Inference Empirical illustration Conclusion

Posterior comparison of MST models w/wo SV
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Figure: The plots show the posterior samples of the fat tail parameters and skewness parameters of
the MST model with/without SV.
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Posterior comparison of OST models w/wo SV
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Figure: The plots show the posterior samples of the fat tail parameters and skewness parameters of
the OST model with/without SV.
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Model comparison and Forecast metrics

We compare 14 VAR models with different assumptions of tail distribution and

stochastic volatility using the in-sample goodness of fit and out-of-sample forecast.

The model marginal likelihood is calculated based on the cross entropy methods,

see Chan and Eisenstat (2018).

The out-of-sample forecast among models can also be measured by the mean

square forecast error (MSFE), the log predictive density (LP), and the scale

continuous rank probability scores (SCRPS) of the posterior predictive

distribution.
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Marginal likelihood

The marginal likelihood of the Skew-t-SV-VAR model requires high-dimensional

integration

p(y1:T ) =

∫
p(y1:T |θ)π(θ)dθ. (6)

Approximate using the important sampling,

p̂IS (y1:T ) =
1

N

N∑
n=1

p̂(y1:T |θ(n))p(θ(n))

f (θ(n)|λ∗)
.

Divide θ into two parameter groups θ1 = {vec(B)
′
, a

′
,γ

′
,ν

′
,σ2′ , h

′
0}

′
and

θ2 = {W′
1:T ,H

′
1:T }

′
. Then, calculate the integrate likelihood p̂(y1:T |θ

(n)
1 ) first.

p̂IS (y1:T ) =
1

N

N∑
n=1

p̂(y1:T |θ
(n)
1 )p(θ

(n)
1 )

f (θ
(n)
1 |λ∗)

.

Hoang Nguyen Vector autoregression models with skewness and heavy tails
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Marginal likelihood

The marginal likelihood of the Skew-t-SV-VAR model requires high-dimensional

integration

p(y1:T ) =

∫
p(y1:T |θ)π(θ)dθ. (7)

Algorithm 1. (Marginal likelihood estimation via the cross-entropy method)

1 Two parameter groups θ1 = {vec(B)
′
, a

′
,γ

′
,ν

′
,σ2′ , h

′
0}

′
and

θ2 = {W′
1:T ,H

′
1:T }

′
.

Obtain the posterior samples θ
(1)
1 , . . . ,θ

(R)
1 from the posterior density π(θ|y1:T ).

2 Consider the parametric family f (θ1;λ) parameterized by parameter λ such that

λ∗ = arg max
λ

1

R

R∑
r=1

log f (θ
(r)
1 |λ)

3 Obtain new samples θ
(1)
1 , . . . ,θ

(N)
1 from f (θ1;λ∗). Then the marginal likelihood

is calculated via important sampling

p̂IS (y1:T ) =
1

N

N∑
n=1

p̂(y1:T |θ
(n)
1 )p(θ

(n)
1 )

f (θ
(n)
1 |λ∗)

.
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Marginal likelihood

The integrated likelihood p(y1:T |θ1) require a high dimensional integral over the latent

states θ2 = {W ′
1:T ,H

′
1:T }

′
,

p(y1:T |θ1) =

∫ ∫
p(y1:T |θ1,W1:T ,H1:T )p(W1:T ,H1:T |θ1)dW1:TdH1:T

p(y1:T |θ1) =

∫
p(y1:T |θ1,H1:T )p(H1:T |θ1)dH1:T

≈
L∑

l=1

1

L

p(y1:T |θ1,H
(l)
1:T )p(H

(l)
1:T |θ1)

f (H
(l)
1:T |λH)

We proposes an important sampling distribution f (H1:T |λH) and simulate

H
(l)
1:T ∼ f (H1:T |λH) for l = 1, . . . , L. Then, p(y1:T |θ1,H

(l)
1:T ) is the conditional

likelihood which can be derived in a closed form multivariate distribution.
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Model comparison

Table: Log marginal likelihood for VAR models with and without stochastic volatility

Gaussian Student-t Skew-t OT MT OST MST

Non SV
LML -220.868 -131.325 -139.614 -131.819 -129.095 -131.257 -128.307

sd (0.002) (0.004) (0.009) (0.011) (0.015) (0.023) (0.028)

SV
LML -52.111 -34.413 -32.811 -36.060 -33.513 -26.706 -24.072

sd (0.069) (0.037) (0.078) (0.251) (0.032) (0.238) (0.235)

We compare the LMLs of 14 VAR models with/without SV. We use the cross entropy methods by Chan and Eisenstat (2018) to

calculate the LMLs. We first sample 100,000 draws from the conditional posterior distributions with 10,000 draws as burn-in. Then, all

LMLs estimated using 100,000 draws from the proposal distributions, see details in Section ??. The standard errors of the estimation

using the batch means method (10 batches) are reported in the brackets. Estimates of the log marginal likelihoods using the ? method

are reported in Table ?? in the Appendix.
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Probability Integral Transform (PIT) histogram plots ut = F (yobst |y1:t−1)
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Figure: The plots show the PITs of one month forecast horizon of 146 recursive estimations
(2007-2019).
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Out-of-samples density forecast - LP

Table: Improvement in LP over the Gaussian VAR model (2007-2019)

1M 3M 6M 12M 1M 3M 6M 12M

(a) Industrial Production (b) Inflation

Gaussian -1.005 -1.078 -1.153 -1.187 -0.378 -0.562 -0.626 -0.673

Student-t 0.044* 0.040* 0.040* 0.036* 0.026* 0.004 -0.016* -0.029*

Skew-t 0.031† 0.032*† 0.036* 0.040* 0.011*† -0.006† -0.023* -0.033*

OT 0.052* 0.041* 0.036* 0.031* 0.038* 0.007 -0.028* -0.061*

MT 0.049* 0.034* 0.031 0.026* 0.038* 0.008 -0.027* -0.057*

OST 0.051* 0.043* 0.043*† 0.043*† 0.038* 0.013† -0.019*† -0.050*†
MST 0.034* 0.033* 0.033* 0.036*† 0.032*† 0.019 -0.020*† -0.046*†
Gaussian-SV -0.850* -0.883* -0.984* -1.024* -0.031* -0.242* -0.243* -0.247*

Student-t-SV 0.002 0.012 0.025* 0.031* -0.001 0.007 0.016* 0.019*

Skew-t-SV 0.002 0.006 0.017* 0.030* -0.007 -0.001 0.003† 0.006†
OT-SV 0.006 0.016 0.035* 0.035* -0.001 -0.000 0.005 0.004

MT-SV 0.004 0.016 0.038* 0.041* -0.002 0.001 0.005 0.003

OST-SV 0.006 0.018 0.021* 0.027* -0.005† 0.001 0.005 0.007

MST-SV 0.001 0.012 0.028* 0.038* -0.005 0.000 0.004 0.003

The first line in each panel reports the LP of the benchmark Gaussian VAR model without stochastic volatility. The relative improvement over

the benchmark is computed as the average of the LP obtained from 146 recursive estimations for different specifications of VAR models during

2007-2019. The entries greater than 0 indicate that the given model is better.
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Out-of-samples density forecast - LP

Table: Improvement in LP over the Gaussian VAR model (2007-2019)

1M 3M 6M 12M 1M 3M 6M 12M

(c) Unemployment rate (d) VIX

Gaussian -0.066 -0.600 -1.079 -1.599 -0.112 -0.484 -0.646 -0.774

Student-t -0.010* -0.047* -0.049* -0.049* 0.020* -0.034* -0.047* -0.055*

Skew-t -0.011* -0.037*† -0.030*† -0.017*† 0.019* -0.011*† -0.017*† -0.027*

OT -0.002* -0.015* -0.011* -0.021* 0.026* -0.023* -0.037* -0.047*

MT 0.001* -0.018* -0.017* -0.026* 0.027* -0.022* -0.035* -0.043*

OST -0.001† -0.009*† -0.002† -0.001† 0.053*† 0.041*† 0.039*† 0.029*†
MST 0.002*† -0.012*† -0.007*† -0.007† 0.039*† 0.030*† 0.027*† 0.020*†
Gaussian-SV 0.522* -0.016* -0.528* -1.257 0.327* -0.135* -0.309* -0.472*

Student-t-SV -0.006* -0.022* -0.040 -0.037 0.023* 0.002 0.000 -0.003

Skew-t-SV -0.005* -0.018 -0.031 -0.043 0.056*† 0.024 0.014 -0.010

OT-SV -0.002 -0.018 -0.031 -0.021 0.028* 0.000 -0.003 -0.006

MT-SV -0.004 -0.025 -0.037 -0.008 0.028* 0.001 -0.003 -0.003

OST-SV -0.002 -0.012 -0.022 -0.029 0.071*† 0.035† 0.017 -0.013

MST-SV -0.003 -0.025 -0.043 -0.004 0.065*† 0.034† 0.012 -0.018

The first line in each panel reports the LP of the benchmark Gaussian VAR model without stochastic volatility. The relative improvement over

the benchmark is computed as the average of the LP obtained from 146 recursive estimations for different specifications of VAR models during

2007-2019. The entries greater than 0 indicate that the given model is better.
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Cumulative log Bayes factors
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Figure: Cumulative log Bayes factors of the predictive density for the 3-month ahead forecast
between the OT-SV and OST-SV models.

Positive values (red) means OST-SV predicts better and negative values (blue) means that OT-SV model does better. The dashed lines

illustrate the scaled values of the original variables. See ? for details.
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Cumulative log Bayes factors
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Figure: Cumulative log Bayes factors of the predictive density for the 3-month ahead forecast
between the MST-SV and OST-SV models.

Positive values (red) means the MST-SV predicts better and negative values (blue) means that the OST-SV model does better. The

dashed lines illustrate the scaled values of the original variables. See ? for details.
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Conclusion and Discussion

Contributions:

VAR models with heavy tails and skewness + an R package.

Findings:

Stochastic volatility improves point and density forecast.

Ignoring the stochastic volatility of the shocks will overestimate the fatness of the

tail distribution and underestimate the skewness.

In general, fat tail improves in-sample goodness of fit and out-of-sample forecast.

Slight evidence of skewness.
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Thank you
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Model comparison and Forecast metrics

Following Andersson and Karlsson (2008), the LP of the posterior predictive

distribution is computed using the Rao-Blackwellization.

LPi,h = log p(yo
i,t+h|y1:t) = log

∫
θ
p(yo

i,t+h|θ, y1:t)p(θ|y1:t)dθ

= log
R∑

r=1

1

R
p(yo

i,t+h|θ
(r), y1:t)

where θ(1), . . . ,θ(R) are the posterior samples of the VAR models.

Bolin and Wallin (2019) proposed a scaled version of the CRPS

SCRPSi,h = −
Ef

∣∣∣yi,t+h|t − yo
i,t+h

∣∣∣
Ef

∣∣∣yi,t+h|t − y
′
i,t+h|t

∣∣∣ − 1

2
log Ef

∣∣∣yi,t+h|t − y
′
i,t+h|t

∣∣∣ ,
where f is the predictive density of the variable yi,t+h|t , and (yi,t+h|t , y

′
i,t+h|t) are

independent random draws from the predictive density f . SCRPS is locally scale

invariant and robust to extreme observations.
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