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Motivation

In many research fields, understanding the dependence structure is the key
to predict the evolution of variables.

Alternative to classical multivariate models, copulas can be easy to apply
with a lot of flexibility.

In high dimensions, there are few factors that contributes to the
dependence structure.

The factor copula model also provides parsimonious and interpretable
economic meanings
Complex structure needs an efficient inference method.
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Preliminary results - Temperatures

Temp

0

4

8

Average temperatures at 479 stations in Germany

Go to Table
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Introduction to Copulas

Copula is a n-dimensional joint cumulative distribution function (cdf) in the
unit domains.
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Let F (x1, ..., xd |θ) be a n-dimensional joint cdf with marginals F1, ...,Fd for all
xi in [−∞,∞], and ui = Fi (xi |θi ) for all i = 1, ..., d , (see Sklar (1959))

F (x1, ..., xd |θ) =C(u1, ..., ud |θ)

f (x1, ..., xd |θ) =c(u1, ..., ud |θC )
n∏

i=1

f (xi |θi )
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Bivariate copulas - Elliptical copulas

Gaussian Copula CGa
R (u) = Φn

R(Φ−1(u1), ..,Φ−1(ud))

Student Copula C St
R (u; ν) = FMSt

R (F−1(u1; ν), ..,F−1(ud ; ν))

Gaussian copula
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Figure: Contours of bivariate distributions with the same marginal standard normal
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Bivariate copulas - Archimedean copulas

Common Bivariate Archimedean Copulas:
C(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2))

Clayton (1978) Frank (1979) Gumbel (1960) Joe (1993)
θ > 0 θ > 0 θ > 1 θ > 1

ϕ(t) = t−θ − 1 ϕ(t) = −ln e−θt−1

e−θ−1
ϕ(t) = (−lnt)θ ϕ(t) = −log(1− (1− t)θ)

ϕ−1(s) = (1 + s)−1/θ ϕ−1(s) = − ln(1+e−s (e−θ−1))
θ ϕ−1(s) = exp(−s1/θ) ϕ−1(s) = (1− (1− e−s ))1/θ

λL = 2−1/θ ,λU = 0 No tail dependence λL = 0, λU = 2− 21/θ λL = 0, λU = 2− 21/θ

Clayton copula
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Frank copula
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Gumbel copula
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Joe copula
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Figure: Contours of bivariate distributions with the same marginal standard normal
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Factor copulas

V0

U1 U2 U3 U4 U5

V0

V1

U1 U2 U3 U4 U5

Figure: One factor and two factor copula models (Krupskii and Joe (2013))

Go to algorithm
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Bi-factor and nested factor copulas

V0

V1 V2 V3

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

Figure: Bifactor copulas with d = 12 and G = 3 (Krupskii and Joe (2015))

V0

V1 V2 V3

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

Figure: Nested factor copulas with d = 12 and G = 3 (Krupskii and Joe (2015))
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Discussion

Estimation of factor copula models in high dimensions is a challenging
problem.
- Contribution: Using the Variational approach to make fast inferences.

In general, the hierarchical structure and group members can be specified
based on the prior knowledge as the assumption of hierarchical models.
However, the bivariate copula links are unknown.
- Contribution: We derive an automatic procedure to recover the hidden
dependence structure using the posterior modes of the latent variables.

Hoang Nguyen Variational Inference for high dimensional structured factor copulas
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Bayesian inference and Variational inference

Assuming that we have specify a factor copula structure together with bivariate
linking copula in each tree layers.

We are interested in the inference on the collection of latent variables and
copula parameters Θ = {v , θ} based on the observables u = {u1t , . . . udt}
The conditional copula density of one factor copulas is the following,

p(u1, . . . , ud |v0; θ) =
d∏

i=1

[
T∏
t=1

cUi ,V0 (uti , vt0|θ0i )

]
,

The the joint posterior density up to a normalized constant is

p(Θ|u) ∝
d∏

i=1

[
T∏
t=1

cUi ,V0 (uti , vt0|θ0i )π(θ0i )

]
.

Hoang Nguyen Variational Inference for high dimensional structured factor copulas
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Bayesian inference and Variational inference

For bi-factor copula, we derive the posterior using the properties for vine copula,

p(Θ|u) ∝
G∏

g=1

dg∏
i=1

[
T∏
t=1

cUig ,Vg |V0
(ut,ig |vt0

, vtg |θgig )

×
T∏
t=1

cUig ,V0 (utig , vt0|θ0ig )π(θgig )π(θ0g )

]
.

where uig |v0
= F (uig |v0

). Thus, it is computational expensive. We approximate
the posterior by a proposal q(Θ|λ∗), see Kucukelbir et al. (2017).

q(Θ|λ∗) ≈ p(Θ|u)
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VI vs MCMC - Inference time

We generate a sample of d = 100 variables in G = 5 groups with T = 1000
time observations. Bivariate copula types are Gaussian, Student, Clayton,
Gumbel, Frank, Joe (and their rotation 90, 180, 270 degree) and Mix copulas.
Time is report in seconds using one core Intel i7-4770 processor.

Table: Time estimation using VI and MCMC

Copula type Gaussian Student-t Clayton Gumbel Frank Joe Mix
(a) Time estimated (s) using VI

One-factor 10 509 24 41 11 17 98
Nested factor 20 783 25 43 13 19 121
Bi-factor 90 3366 165 267 87 154 596

(b) Time estimated (s) using MCMC
One-factor 1097 491166 3762 5262 1083 2221 8535
Nested factor 1786 567862 5977 6098 1264 3478 20520
Bi-factor 17935 1758007 83680 177932 30345 236809 118729

We report the time of estimation for the factor copula models using VI and MCMC for 1000 samples. The VI

convergence time depends on its optimization parameters such as the number of MC samples, number of MC

for calculating the gradients, tolerance, among others. The MCMC approach depends mainly on the number of

iterations.
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Bi-factor copula model

The figure compares the posterior means using variational approximation to the true generated

values of the bi-factor copula models. For the bi-factor Student-t copula, the bivariate copulas in

the second tree are mixed of other copula families due to the identification issue.
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Bi-factor copula model

The figure compares the standard deviations of VI and MCMC estimation for bi-factor copula

models. In the bi-factor model, the standard deviations of the parameters θ and v are lower than

that of the MCMC approach. It is acceptable because we are more interested in the copula

parameters θ.
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Why VI performs well in comparison to MCMC
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The figure compares the posterior samples of VI (in red) and MCMC (in blue) for Gaussian one

factor copula model.
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Recover the dependence structure

1 Initialize random bivariate links.
2 Given a copula structure, we use VI to estimate the latent variables and

obtain the posterior mode v̄ .

BICi = −2logcUi ,V0 (ui , v̄0; θ̂0i ) + nilog(T )

The BIC of the one factor copula could be derived as,

BIC = −2
d∑

i=1

logcUi ,V0 (ui , v̄0; θ̂0i ) + (T +
d∑

i=1

ni )log(T )

=
d∑

i=1

BICi + Tlog(T ).

3 Choose bivariate copula functions between ui and v̄ based on BIC.

BIC
(∗)
i = −2logc

(∗)
Ui ,V0

(ui , v̄0; θ
(∗)
0i ) + n

(∗)
i log(T ) ≤ BICi

BIC
(∗) =

d∑
i=1

BIC
(∗)
i + Tlog(T ) ≤

d∑
i=1

BICi + Tlog(T ) = BIC

4 If there are changes in the bivariate links, repeat (2)-(4) until convergence.
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One factor copula model

Table: Model comparison for the one-factor copula models

Copula type Gaussian Student-t Clayton Gumbel Frank Joe Mix
(a) Initial at the correct structure

ELBO 31.3 32.6 75.2 67.9 56.6 77.1 56.2
AIC -63.2 -65.5 -146.4 -134.8 -114.3 -149.9 -111.5
BIC -62.7 -64.5 -146.0 -134.3 -113.8 -149.4 -110.9
logp(u|θ) 31.7 32.9 73.3 67.5 57.2 75.1 55.9

(b) Initial at a random structure
# Selection iteration 3 5 10 2 3 10 7
% accuracy 99 80 70 99 99 61 85
ELBO 31.3 32.6 75.2 67.9 56.6 77.2 56.2
AIC -63.2 -65.5 -146.5 -134.8 -114.3 -149.9 -111.5
BIC -62.7 -64.6 -146.0 -134.3 -113.8 -149.5 -111.0
logp(u|θ) 31.7 32.9 73.3 67.5 57.2 75.1 55.9

We report the statistical criteria for the one-factor copula models. Each factor copula model contains 100 bivariate

links with about 100 to 200 copula parameters. We use Gauss-Legendre quadrature integration over the latent space

to obtain logp(u|θ). The value of ELBO, AIC, BIC, logp(u|θ) are normalized for 1000 data observations.
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Nested factor copula model

Table: Model comparison for the nested factor copula models

Copula type Gaussian Student-t Clayton Gumbel Frank Joe Mix
(a) Initial at the correct structure

ELBO 25.9 27.9 69.3 61.3 50.7 70.3 49.7
AIC -52.9 -56.8 -137.2 -122.9 -103.5 -139.1 -99.9
BIC -52.3 -55.8 -136.7 -122.4 -103.0 -138.5 -99.3
logp(u|θ) 26.5 28.6 68.7 61.6 51.8 69.6 50.1

(b) Initial at a random structure
# Selection iteration 4 5 10 3 4 10 8
% accuracy 96 77 75 99 97 52 83
ELBO 25.8 27.8 69.3 61.2 50.6 70.3 49.7
AIC -52.7 -56.7 -137.0 -122.8 -103.2 -138.9 -99.8
BIC -52.2 -55.8 -136.5 -122.3 -102.7 -138.3 -99.2
logp(u|θ) 26.5 28.5 68.6 61.5 51.7 69.5 50.0

We report the statistical criteria for the nested factor copula models. Each factor copula model contains 6 latent factors,

105 bivariate links with about 105 to 210 copula parameters. We use Gauss-Legendre quadrature integration over the

latent space to obtain logp(u|θ). The value of ELBO, AIC, BIC, logp(u|θ) are normalized for 1000 data observations.
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Bifactor copula model

Table: Model comparison for the bi-factor copula models

Copula type Gaussian Student-t Clayton Gumbel Frank Joe Mix
(a) Initial at the correct structure

ELBO 56.2 83.8 140.9 126.2 105.0 143.2 107.6
AIC -115.1 -170.4 -275.0 -254.4 -214.7 -279.4 -212.7
BIC -114.1 -168.9 -274.0 -253.4 -213.7 -278.5 -211.6
logp(u|θ) 57.8 85.5 137.7 127.4 107.5 139.9 106.6

(b) Initial at a random structure
# Selection iteration 4 9 9 5 9 10 9
% accuracy Tree 1 99 76 84 99 99 46 85
% accuracy Tree 2 97 83 19 66 92 2 67
ELBO 56.2 83.8 132.2 124.0 104.8 134.2 105.5
AIC -115.1 -170.1 -263.1 -250.6 -214.0 -266.8 -209.7
BIC -114.1 -168.8 -262.1 -249.6 -213.0 -265.8 -208.7
logp(u|θ) 57.7 85.3 131.7 125.5 107.2 133.6 105.1

We report the statistical criteria for the bi-factor copula models. Each factor copula model contains 6 latent factors, 200

bivariate links with about 200 to 300 copula parameters. We use Gauss-Legendre quadrature integration over the latent

space to obtain logp(u|θ). The value of ELBO, AIC, BIC, logp(u|θ) are normalized for 1000 data observations.
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Empirical Illustration - Temperatures

Temp

0

4

8

Average temperatures at 479 stations in Germany

Go to Table
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Empirical Illustration - Temperatures

Data: daily temperatures measured at 479 stations in Germany

T = 1094 observations

G = 24 groups that the distance among stations in each group at most
200 kilometers.

Marginal distribution of temperatures using the ARMA(1,1) process, see
Erhardt et al. (2015),

xti = α0i +
K∑

k=1

(
αki sin

(
2πkt

365.25

)
+ βkicos

(
2πkt

365.25

))
+ φixt−1,i + εti + δi εt−1,i ,

εti ∼ FSkew−t(νi , γi , σi ),

where (α0i , φi , δi ) are parameters of ARMA(1,1) process, (νi , γi ) are the
parameters of skew Student-t distribution, and (αki , βki ) are the slopes of
Fourier exogenous regressors with different frequencies (K = 2 to minimize
the AIC of marginal models).

Hoang Nguyen Variational Inference for high dimensional structured factor copulas



Outline Introduction to copulas Variational Inference Simulation Empirical Illustration Conclusion

Empirical Illustration - Temperatures

Table: Model comparison of daily temperature dependence

Structure One-factor Two-factor Nested factor Bi-factor
AIC -458.9 -611.4 -935.7 -961.5
BIC -455.4 -606.2 -931.4 -955.3
logp(u|θ) 230.1 306.7 468.7 482.0
# bivariate links 479 929 503 958
# Gaussian 1 204 26 365
# Student-t 286 210 442 389
# Clayton (rotated) 0 6 0 1
# Gumbel (rotated) 192 332 35 154
# Frank (rotated) 0 172 0 47
# Joe (rotated) 0 5 0 2
# Independence 0 29 0 0
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Empirical Illustration - Temperatures
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The figure shows prediction of temperatures using the estimated bi-factor copula model at Grafenberg-Kasberg and

Bertsdorf-Hörnitz stations. They are chosen such that in Grafenberg-Kasberg group, we have the information of 34

other stations while in Bertsdorf-Hörnitz group, we only have the information of 7 other stations. The predicted

mean temperatures is the black line, and the measured temperatures is the red dash line.
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Conclusion and Discussion

Contributions:

Fast variational inference for factor copula model in high dimensions.

Recover the bivariate copula functions based on the posterior mode of the
latent variables.

Findings:

Compared to MCMC, VI tends to be faster and easier to scale to large
data.

The posterior means of VI samples are similar to that of MCMC samples
while the posterior standard deviations are only underestimated in the case
of bi-factor copulas.

Extensions:

There are several strategies to extend for dynamic factor copula models.
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Thank you
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Kullback Leibler divergence

In order to measure how well the approximation, Variational inference chooses
the proposal distribution come close to the posterior in term of KL divergence:

KL(Q||P) =

∫
Q(x)log

Q(x)

P(x)
dx ≥ 0

Note that: KL(Q||P) 6= KL(P||Q) ≥ 0
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Objective function

We specify a family Q of densities as the proposal distribution

arg min
λ

KL (q(Θ;λ)||p(Θ|u)) = −Eq[logp(u|Θ)] + Eq[logq(Θ;λ)]

such that supp(q(Θ;λ)) ⊆ supp(p(Θ|u))

Because we cannot compute the KL, we optimize an alternative objective
(Evidence lower bound) that is equivalent to the KL up to an added constant:

arg max
λ

ELBO(q) = Eq[logp(u,Θ)]− Eq[logq(Θ;λ)]

= logp(u)− KL(q(Θ;λ)||p(Θ|u)) ≤ logp(u)
(1)

such that when q(Θ;λ) = p(Θ|u), we have ELBO = logp(u).
Monte Carlo approximation for ELBO with Θ(s) ∼ q(Θ;λ)

ELBO(q) ≈ 1

S

S∑
s=1

[
logp(u,Θ(s))

]
− Eq(Θ)[logq(Θ;λ)].

Hoang Nguyen Variational Inference for high dimensional structured factor copulas



References Appendix

Objective function

We specify a family Q of densities as the proposal distribution

arg min
λ

KL (q(Θ;λ)||p(Θ|u)) = −Eq[logp(u|Θ)] + Eq[logq(Θ;λ)]

such that supp(q(Θ;λ)) ⊆ supp(p(Θ|u))

Because we cannot compute the KL, we optimize an alternative objective
(Evidence lower bound) that is equivalent to the KL up to an added constant:

arg max
λ

ELBO(q) = Eq[logp(u,Θ)]− Eq[logq(Θ;λ)]

= logp(u)− KL(q(Θ;λ)||p(Θ|u)) ≤ logp(u)
(1)

such that when q(Θ;λ) = p(Θ|u), we have ELBO = logp(u).

Monte Carlo approximation for ELBO with Θ(s) ∼ q(Θ;λ)

ELBO(q) ≈ 1

S

S∑
s=1

[
logp(u,Θ(s))

]
− Eq(Θ)[logq(Θ;λ)].

Hoang Nguyen Variational Inference for high dimensional structured factor copulas



References Appendix

Objective function

We specify a family Q of densities as the proposal distribution

arg min
λ

KL (q(Θ;λ)||p(Θ|u)) = −Eq[logp(u|Θ)] + Eq[logq(Θ;λ)]

such that supp(q(Θ;λ)) ⊆ supp(p(Θ|u))

Because we cannot compute the KL, we optimize an alternative objective
(Evidence lower bound) that is equivalent to the KL up to an added constant:

arg max
λ

ELBO(q) = Eq[logp(u,Θ)]− Eq[logq(Θ;λ)]

= logp(u)− KL(q(Θ;λ)||p(Θ|u)) ≤ logp(u)
(1)

such that when q(Θ;λ) = p(Θ|u), we have ELBO = logp(u).
Monte Carlo approximation for ELBO with Θ(s) ∼ q(Θ;λ)

ELBO(q) ≈ 1

S

S∑
s=1

[
logp(u,Θ(s))

]
− Eq(Θ)[logq(Θ;λ)].

Hoang Nguyen Variational Inference for high dimensional structured factor copulas



References Appendix

Optimization strategy in Kucukelbir et al. (2017)

Due to several restrictions on the parameters, we transform the constraint
space of the copula parameters to the real coordinate space
Θ̃ = {Θ̃j} = {Tj(Θj)} = T(Θ), for j = 1, . . . ,N.

We assume a product of univariate Gaussian densities as the proposal
density,

q(Θ̃;µ, σ2) = φN(Θ̃;µ, σ2) =
N∏
j=1

φ(Θ̃j ;µj , σ
2
j ), (2)

Then, we apply the stochastic optimization to maximize the ELBO.

ELBO(q) ≈ 1

S

S∑
s=1

[
logp(u,T−1(Θ̃(s))) + log|det JT−1 (Θ̃(s))|

]
− Eq(Θ̃)[logq(Θ̃;λ)].

∇λELBO ≈
1

M

M∑
m=1

∇λ
[
logp(u,T−1(Θ̃(m))) + log|det JT−1 (Θ̃(m))|

]
−∇λEq(Θ̃)[logq(Θ̃;λ)]

(3)
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Transformation functions

Table: Transformation functions from a constraint domain to the real domain

Parameter range Θ̃ = T(Θ) ∈ R Θ = T−1(Θ̃) JT−1 (Θ̃) = ∂T−1(Θ̃)

∂Θ̃

θ ∈ [0, 1] θ̃ = log
(

θ
1−θ

)
θ = expθ̃

1+expθ̃
J = expθ̃

(1+expθ̃)2

θ ∈ [0,∞] θ̃ = log (θ) θ = expθ̃ J = expθ̃

θ ∈ [L,∞] θ̃ = log (θ − L) θ = expθ̃ + L J = expθ̃

θ ∈ [−1, 0] θ̃ = log
(

1+θ
−θ

)
θ = − 1

1+expθ̃
J = expθ̃

(1+expθ̃)2

θ ∈ [−∞, 0] θ̃ = log (−θ) θ = −expθ̃ J = −expθ̃

θ ∈ [−∞,U] θ̃ = log (U − θ) θ = U − expθ̃ J = −expθ̃

θ ∈ [L,U] θ̃ = log
(
θ−L
U−θ

)
θ = L+Uexpθ̃

1+expθ̃
J = (U−L)expθ̃

(1+expθ̃)2

θ ∈ [−∞,∞] θ̃ = θ θ = θ̃ J = 1
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Bivariate copula families and their characteristics

Table: Bivariate copula families and their characteristics

Copula Notation Copula distribution function Prior Range Kendall’s τ

Gaussian
Gp CGp(u, v ; θ) = Φ2(Φ−1(u),Φ−1(v); θ) πGp(θ) = πGn(θ) = 2

π
1√

1−θ2

θ ∈ (0, 1) 2
π
arcsin(θ)

Gn CGn(u, v ; θ) = Φ2(Φ−1(u),Φ−1(v); θ) θ ∈ (−1, 0)

Student-t
Tp CTp(u, v ; θ, ν) = T2(T−1

ν (u),T−1
ν (v); θ, ν) πTp(θ) = πTn(θ) = 2

π
1√

1−θ2
θ ∈ (0, 1), ν ∈ (2, 30) 2

π
arcsin(θ)

Tn CTn(u, v ; θ, ν) = T2(T−1
ν (u),T−1

ν (v); θ, ν) πT (ν) = Gamma(ν; 1, 0.1) θ ∈ (−1, 0), ν ∈ (2, 30)

Clayton

C CC (u, v ; θ) =
(
u−θ + v−θ − 1

)− 1
θ

πC (θ) = πC180(θ) = 2
(θ+2)2 θ ∈ (0,∞) θ

θ+2C180 CC180(u, v ; θ) = 1− u − v + CC (1− u, 1− v ; θ)
C90 CC90(u, v ; θ) = v − CC (1− u, v ;−θ)

πC90(θ) = πC270(θ) = 2
(θ−2)2 θ ∈ (−∞, 0) θ

θ−2C270 CC270(u, v ; θ) = u − CC (u, 1− v ;−θ)

Gumbel

G CG (u, v ; θ) = exp
[
−
{

(−logu)θ + (−logv)θ
}1/θ

]
πG (θ) = 1

θ2

θ ∈ [1,∞) 1− 1
θ

G180 CG180(u, v ; θ) = 1− u − v + CG (1− u, 1− v ; θ)
G90 CG90(u, v ; θ) = u − CG (1− u, v ;−θ)

θ ∈ (−∞,−1] −1− 1
θG270 CG270(u, v ; θ) = v − CG (u, 1− v ;−θ)

Frank
Fp CFp(u, v ; θ) = − 1

θ
log

(
1− (1−e−θu)(1−e−θv )

1−e−θ

)
πF (θ) = 4

θ2 (1− B(θ) + 2D1(θ)) θ ∈ (0,∞)
1− 4

θ
(1− D1(θ))

Fn CFn(u, v ; θ) = − 1
θ
log

(
1− (1−e−θu)(1−e−θv )

1−e−θ

)
≈ Cauchy(θ; 0, 6) θ ∈ (−∞, 0)

Joe J CJ(u, v ; θ) = 1−
{

(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ
}1/θ

πJ(θ) =
∞∑
k=1

8(θ(k−1)+2−1/k)

(θk+2)2(θ(k−1)+2)2 θ ∈ [1,∞) 1− 4
∞∑
k=1

1
k(θk+2)(θ(k−1)+2)

J180 CJ180(u, v ; θ) = 1− u − v + CJ(1− u, 1− v ; θ) ≈ 2
(θ+2)2

J90 CJ90(u, v ; θ) = v − CJ(1− u, v ;−θ) πJ(θ) =
∞∑
k=1

8(−θ(k−1)+2−1/k)

(θk−2)2(θ(k−1)−2)2 θ ∈ (−∞,−1] 1− 4
∞∑
k=1

1
k(θk−2)(θ(k−1)−2)

J270 CJ270(u, v ; θ) = u − CJ(u, 1− v ;−θ) ≈ 2
(θ−2)2

Independence I CI (u, v) = uv - - 0

D1(θ) = 1
θ

∫ θ
0

θ
exp(θ)−1

denotes the Debye function of order one. B(θ) = θ
exp(θ)−1

denotes the Bernoulli function.

The table shows some common bivariate copula functions as well as their characteristics such as parameter ranges, and Kendall’s τ correlation. We divide the symmetric copula
functions into positive and negative Kendall’s τ correlation copulas to prevent the identification issue of the factor copula models.
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Empirical comparison - Stock returns

Kendall τ1 of bivariate copulas in the 1st tree
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Kendall τ2 of bivariate copulas in the 2nd tree
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The figure shows the histogram of the Kendall-τ correlation in the bi-factor model
estimated at the posterior means. The first tree layer is on left top corner and the
second tree is on left bottom corner. The histogram of degree of freedom ν is on top
right corner. Note that, ν = 0 represents for non Student-t bivariate copulas.
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Empirical comparison - Temperatures

Kendall τ1 of bivariate copulas in the 1st tree
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Kendall τ2 of bivariate copulas in the 2nd tree
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The figure shows the histogram of the Kendall-τ correlation in the bi-factor model
estimated at the posterior means. The first tree layer is on left top corner and the
second tree is on left bottom corner. The histogram of degree of freedom ν is on top
right corner. Note that, ν = 0 represents for non Student-t bivariate copulas.
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Sensitivity to Transformations
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Figure 8: Comparison of gradient estimator variances. The ADVI gradient estimator exhibits lower
variance than the BBVI estimator. Moreover, it does not require control variate variance reduction, which
is not available in univariate situations.

Figure 8: Comparison of gradient estimator variances. The ADVI gradient estimator exhibits lower
variance than the BBVI estimator. Moreover, it does not require control variate variance reduction, which
is not available in univariate situations.

3.3 Sensitivity to Transformations

ADVI uses a transformation T from the unconstrained space to the constrained space. We now study how
the choice of this transformation affects the non-Gaussian posterior approximation in the original latent
variable space.

Consider a posterior density in the Gamma family, with support over R>0. Figure 9 shows three con-
figurations of the Gamma, ranging from Gamma(1, 2), which places most of its mass close to θ = 0, to
Gamma(10, 10), which is centered at θ = 1. Consider two transformations T1 and T2

T1 : θ 7→ log(θ) and T2 : θ 7→ log(exp(θ)− 1),

both of which map R>0 to R. ADVI can use either transformation to approximate the Gamma posterior.
Which one is better?

Figure 9 show the ADVI approximation under both transformations. Table 2 reports the corresponding KL

divergences. Both graphical and numerical results prefer T2 over T1. A quick analysis corroborates this.
T1 is the logarithm, which flattens out for large values. However, T2 is almost linear for large values
of θ . Since both the Gamma (the posterior) and the Gaussian (the ADVI approximation) densities are
light-tailed, T2 is the preferable transformation.
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Figure 9: ADVI approximations to Gamma densities under two different transformations.
Figure 9: ADVI approximations to Gamma densities under two different transformations.

Is there an optimal transformation? Without loss of generality, we consider fixing a standard Gaussian
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