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Motivation

@ In many research fields, understanding the dependence structure is the key
to predict the evolution of variables.

@ Alternative to classical multivariate models, copulas can be easy to apply
with a lot of flexibility.
o In high dimensions, there are few factors that contributes to the
dependence structure.
o The factor copula model also provides parsimonious and interpretable

economic meanings
o Complex structure needs an efficient inference method.
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Introduction to Copulas

Copula is a n-dimensional joint cumulative distribution function (cdf) in the
unit domains.
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Let F(x1,...,xq4|0) be a n-dimensional joint cdf with marginals Fy, ..., F4 for all

x;i in [—o0, 00], and u; = Fi(xi|0;) for all i = 1,...,d, (see Sklar (1959))
F(xi, ..., xa]0) =C(u1, ..., uq|0)
F(x1, .o xg|0) =c(us, ..., ug|0c) [ | F(xil67)
i=1
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Bivariate copulas - Elliptical copulas

Gaussian Copula CS°(u) = ®R(d (1), .., ® (uq))
Student Copula C3'(u; v) = FA® (FH(u1;v), .., F(ua; v))

Gaussian copula 1(5) copula 1(2) copula

Figure: Contours of bivariate distributions with the same marginal standard normal
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Bivariate copulas - Archimedean copulas

Common Bivariate Archimedean Copulas:
Clun, 1) = 7 (ip(un) + (1))

Clayton (1978) Frank (1979) Gumbel (1960) Joe (1993)
6>0 0 > o 6>1 6>1
_ —ot_
Pty =t"%—1 o(t) = —Int—5=1 @(t) = (=Int)’ @(t) = —log(1 — (1 - t)°)
Se—0 _ _ —
w’l(s):(1+s)’l/g 0 1(5):7/(1” ge 1)) (s)—exp( 51/9) o 1(5):(17(176 S))I/H
A =2 ,=0 No tail dependence ,\L =0, Ay =2-2Y° AL=0Ay=2-—2°
Clayton copula Frank copula Gumbel copula Joe copula

Figure: Contours of bivariate distributions with the same marginal standard normal
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Factor copulas

wloo i,

Figure: One factor and two factor copula models (Krupskii and Joe (2013))

Go to algorithm
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Bi-factor and nested factor copulas

Figure: Bifactor copulas with d = 12 and G = 3 (Krupskii and Joe (2015))

Figure: Nested factor copulas with d = 12 and G = 3 (Krupskii and Joe (2015))
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Discussion

o Estimation of factor copula models in high dimensions is a challenging
problem.
- Contribution: Using the Variational approach to make fast inferences.
@ In general, the hierarchical structure and group members can be specified
based on the prior knowledge as the assumption of hierarchical models.
However, the bivariate copula links are unknown.
- Contribution: We derive an automatic procedure to recover the hidden
dependence structure using the posterior modes of the latent variables.
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Bayesian inference and Variational inference

Assuming that we have specify a factor copula structure together with bivariate
linking copula in each tree layers.

@ We are interested in the inference on the collection of latent variables and
copula parameters © = {v, 0} based on the observables u = {u1¢,. .. g}

@ The conditional copula density of one factor copulas is the following,

d

p(uz, ..., uq|vo; 6) :H HCU,,VO uti, veo|6oi) |,

i=1 Lt=1

@ The the joint posterior density up to a normalized constant is

d T
u) o H H cu;,vo (Ui, veo|Ooi)m(6oi)

i=1 Lt=1
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Bayesian inference and Variational inference

For bi-factor copula, we derive the posterior using the properties for vine copula,

G dg

p(Olu) O‘HH H Uiy Vel Vo (Ut ig [vio» Vig | Oiy )

g=1i=1

X HCUfg,ve(Uﬁg, veo|Ooi )7 (Ogi, ) (Oog) | -

where u;, |, = F(ui,y,)- Thus, it is computational expensive. We approximate
the posterior by a proposal q(©|\*), see Kucukelbir et al. (2017).

4(O\") = p(©]u)
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VI vs MCMC - Inference time

We generate a sample of d = 100 variables in G = 5 groups with T = 1000
time observations. Bivariate copula types are Gaussian, Student, Clayton,
Gumbel, Frank, Joe (and their rotation 90, 180, 270 degree) and Mix copulas.
Time is report in seconds using one core Intel i7-4770 processor.

Table: Time estimation using VI and MCMC

Copula type  Gaussian  Student-t  Clayton Gumbel  Frank Joe Mix
(a) Time estimated (s) using VI
One-factor 10 509 24 41 11 17 98
Nested factor 20 783 25 43 13 19 121
Bi-factor 90 3366 165 267 87 154 596
(b) Time estimated (s) using MCMC
One-factor 1097 491166 3762 5262 1083 2221 8535
Nested factor 1786 567862 5977 6098 1264 3478 20520
Bi-factor 17935 1758007 83680 177932 30345 236809 118729

We report the time of estimation for the factor copula models using VI and MCMC for 1000 samples. The VI
convergence time depends on its optimization parameters such as the number of MC samples, number of MC
for calculating the gradients, tolerance, among others. The MCMC approach depends mainly on the number of
iterations.
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Bi-factor copula model

Gsussian bi-tactor copula Studentbi-actor copula Clayton bi-tactor copuia

Gaussian bi-tactor copula Studentbi-actor copula Clayton bi-tactor copula
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The figure compares the posterior means using variational approximation to the true generated
values of the bi-factor copula models. For the bi-factor Student-t copula, the bivariate copulas in
the second tree are mixed of other copula families due to the identification issue.
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Bi-factor copula model

Gausson b-tactr copula Studenb-fctr copula Claton b-tactor copula
H g
2]

H g
| Grmsin oo copue Studonb-factorcopula Claton b-tactor copula
. .
i
g :
Gaueson b-factr copula Studenbi-fctor copula Claton bi-factr copula
5 857
iz
Studenb-tctr copula
. P
//J,g

The figure compares the standard deviations of VI and MCMC estimation for bi-factor copula
models. In the bi-factor model, the standard deviations of the parameters 6 and v are lower than
that of the MCMC approach. It is acceptable because we are more interested in the copula
parameters 6.
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Why VI performs well in comparison to MCMC

V1o
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The figure compares the posterior samples of VI (in red) and MCMC (in blue) for Gaussian one
factor copula model.
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Recover the dependence structure

@ Initialize random bivariate links.
@ Given a copula structure, we use VI to estimate the latent variables and
obtain the posterior mode v.

BIC;, = —210gCu,-,v0(ui, Vo, éo,') + n,-log( T)

The BIC of the one factor copula could be derived as,

d d
BIC = -2 Z Logcu;, v, (Ui, Vo; Bor) + (T + Z ni)log(T)

i=1 i=1
d

= BIC; + Tlog(T).

i=1
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Recover the dependence structure

@ Initialize random bivariate links.
@ Given a copula structure, we use VI to estimate the latent variables and
obtain the posterior mode v.

BIC;, = _21°gCU;,Vo(Uf7 Vo, éo,') + n,-log( T)

The BIC of the one factor copula could be derived as,

d d
BIC = -2 Z Logcu;, v, (Ui, Vo; Bor) + (T + Z ni)log(T)
i=1 i=1

d
= BIC; + Tlog(T).

i=1
© Choose bivariate copula functions between u; and v based on BIC.

@E*) = 7210gcbt’)v0(u,-, Vo; 0((,77)) + nf*)log( T) < BIC;

d d
BIc™ = Zmﬁ*’ + Tlog(T) < > BIC;+ Tlog(T) = BIC
i=1 i=1

@ If there are changes in the bivariate links, repeat (2)-(4) until convergence.
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One factor copula model

Table: Model comparison for the one-factor copula models

Copula type Gaussian ~ Student-t  Clayton  Gumbel  Frank Joe Mix
(a) Initial at the correct structure
ELBO 313 32.6 75.2 67.9 56.6 77.1 56.2
AIC -63.2 -65.5 -146.4 -1348 -1143 -1499 -1115
BIC -62.7 -64.5 -146.0 -134.3 -113.8 -149.4 -110.9
Logp(u|0) 317 329 733 675 572 751 559
(b) Initial at a random structure
# Selection iteration 3 5 10 2 3 10 7
% accuracy 99 80 70 99 99 61 85
ELBO 313 32.6 75.2 67.9 56.6 7.2 56.2
AIC -63.2 -65.5 -146.5 -134.8 -114.3 -1499 -1115
BIC -62.7 -64.6 -146.0 -134.3 -113.8 -149.5 -111.0
logp(uld) 31.7 32.9 73.3 67.5 57.2 75.1 55.9

We report the statistical criteria for the one-factor copula models. Each factor copula model contains 100 bivariate
links with about 100 to 200 copula parameters. We use Gauss-Legendre quadrature integration over the latent space
to obtain logp(u|@). The value of ELBO, AIC, BIC, logp(u|f) are normalized for 1000 data observations.
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Table: Model comparison for the nested factor copula models

Copula type Gaussian  Student-t  Clayton  Gumbel  Frank Joe Mix
(a) Initial at the correct structure
ELBO 25.9 27.9 69.3 61.3 50.7 703 49.7
AIC -52.9 -56.8  -137.2 -1229 -103.5 -139.1 -99.9
BIC -52.3 -55.8  -136.7  -122.4 -103.0 -138.5 -99.3
logp(ulf) 26.5 28.6 68.7 61.6 51.8 69.6  50.1
(b) Initial at a random structure
## Selection iteration 4 5 10 3 4 10 8
% accuracy 96 77 75 99 97 52 83
ELBO 25.8 27.8 69.3 61.2 50.6 70.3 497
AIC -52.7 -56.7  -137.0  -122.8 -103.2 -138.9 -99.8
BIC -52.2 -55.8  -136.5 -122.3  -102.7 -138.3 -99.2
logp(ulf) 26.5 28.5 68.6 61.5 51.7 69.5  50.0

We report the statistical criteria for the nested factor copula models. Each factor copula model contains 6 latent factors,

105 bivariate links with about 105 to 210 copula parameters. We use Gauss-Legendre quadrature integration over the
latent space to obtain logp(u|6). The value of ELBO, AIC, BIC, logp(u|f) are normalized for 1000 data observations.

Hoang Nguyen
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Bifactor copula model

Table: Model comparison for the bi-factor copula models
Copula type Gaussian  Student-t  Clayton  Gumbel  Frank Joe Mix

(a) Initial at the correct structure

ELBO 56.2 83.8 140.9 126.2 105.0 143.2 107.6

AIC -115.1 -170.4 -275.0 -254.4 -2147 -279.4 -212.7

BIC -114.1 -168.9 -274.0 -253.4 -213.7 -2785 -211.6

logp(ulf) 57.8 85.5 137.7 127.4 107.5 139.9 106.6
(b) Initial at a random structure

# Selection iteration 4 9 9 5 9 10 9

% accuracy Tree 1 99 76 84 99 99 46 85

% accuracy Tree 2 97 83 19 66 92 2 67

ELBO 56.2 83.8 132.2 124.0 104.8 134.2 105.5

AlIC -115.1 -170.1 -263.1 -250.6 -214.0 -266.8 -209.7

BIC -114.1 -168.8 -262.1 -249.6 -213.0 -265.8 -208.7

Logp(ul0) 57.7 853 1317 1255 107.2 1336 105.1

We report the statistical criteria for the bi-factor copula models. Each factor copula model contains 6 latent factors, 200

bivariate links with about 200 to 300 copula parameters. We use Gauss-Legendre quadrature integration over the latent

space to obtain logp(u|@). The value of ELBO, AIC, BIC, logp(u|@) are normalized for 1000 data observations.

Hoang Nguyen
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Empirical Illustration - Temperatures

[

[

Data: daily temperatures measured at 479 stations in Germany
T = 1094 observations

G = 24 groups that the distance among stations in each group at most
200 kilometers.

Marginal distribution of temperatures using the ARMA(1,1) process, see
Erhardt et al. (2015),

K
2mkt 2wkt

Xti = Qoj + g (akISi" (7) + Biicos ( )) + Gixe—1,i + € + dj€r_1i,
= 365.25 365.25

€ti ~ Fskew—t(Vi, Vi, 71),

where (i, ¢i, d;) are parameters of ARMA(1,1) process, (vj,~i) are the
parameters of skew Student-t distribution, and (i, B«i) are the slopes of
Fourier exogenous regressors with different frequencies (K = 2 to minimize
the AIC of marginal models).

Hoang Nguyen Variational Inference for high dimensional structured factor copulas



Empirical lllustration
ooeo

Empirical Illustration - Temperatures

Table: Model comparison of daily temperature dependence

Structure One-factor ~ Two-factor  Nested factor  Bi-factor
AlIC -458.9 -611.4 -935.7 -961.5
BIC -455.4 -606.2 -931.4 -955.3
logp(ulf) 230.1 306.7 468.7 482.0
# bivariate links 479 929 503 958
# Gaussian 1 204 26 365
# Student-t 286 210 442 389
# Clayton (rotated) 0 6 0 1
# Gumbel (rotated) 192 332 35 154
# Frank (rotated) 0 172 0 47
# Joe (rotated) 0 5 0 2
# Independence 0 29 0 0

Hoang Nguyen Variational Inference for high dimensional structured factor copulas
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Empirical Illustration - Temperatures

20 30
1 1

Grafenberg-Kasberg
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|
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2016 2017 2018
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|
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The figure shows prediction of temperatures using the estimated bi-factor copula model at Grafenberg-Kasberg and
Bertsdorf-Hornitz stations. They are chosen such that in Grafenberg-Kasberg group, we have the information of 34
other stations while in Bertsdorf-Hornitz group, we only have the information of 7 other stations. The predicted
mean temperatures is the black line, and the measured temperatures is the red dash line.
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Conclusion and Discussion

Contributions:
o Fast variational inference for factor copula model in high dimensions.

@ Recover the bivariate copula functions based on the posterior mode of the
latent variables.

Findings:
@ Compared to MCMC, VI tends to be faster and easier to scale to large
data.

@ The posterior means of VI samples are similar to that of MCMC samples
while the posterior standard deviations are only underestimated in the case
of bi-factor copulas.

Extensions:
@ There are several strategies to extend for dynamic factor copula models.

Hoang Nguyen Variational Inference for high dimensional structured factor copulas
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Thank you
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Kullback Leibler divergence

In order to measure how well the approximation, Variational inference chooses
the proposal distribution come close to the posterior in term of KL divergence:

KL(QHP)_/Q x)log (( ; >0

00 02 04 06 08
KL
00 05 10 15

Note that: KL(Q||P) # KL(P||Q) >0

Hoang Nguyen Variational Inference for high dimensional structured factor copulas



Appendix
O@000000

Objective function

We specify a family Q of densities as the proposal distribution
arg min KL (9(©; N)[|p(©]u)) = —Eq[1ogp(u|O)] + Eq[10gq(O; A)]

such that supp(q(©; \)) C supp(p(©|u))

Hoang Nguyen Variational Inference for high dimensional structured factor copulas
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Objective function

We specify a family Q of densities as the proposal distribution
argmin KL (q(©; A)[[p(®u)) = ~Eq[1ogp(u|®)] + Eq[10gq(O; V)]
such that supp(q(©; \)) C supp(p(©|u))

Because we cannot compute the KL, we optimize an alternative objective
(Evidence lower bound) that is equivalent to the KL up to an added constant:

arg max ELBO(q) = Eq[Logp(u, ©)] — Eq[1ogq(O; A)] )
= logp(u) — KL(q(©; A)[[p(©]u)) < Logp(u)

such that when g(©; \) = p(©|u), we have ELBO = logp(u).

Hoang Nguyen Variational Inference for high dimensional structured factor copulas
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Objective function

We specify a family Q of densities as the proposal distribution
argmin KL (q(©; A)[[p(®u)) = ~Eq[1ogp(u|®)] + Eq[10gq(O; V)]
such that supp(q(©; \)) C supp(p(©|u))

Because we cannot compute the KL, we optimize an alternative objective
(Evidence lower bound) that is equivalent to the KL up to an added constant:

arg)r\nax ELBO(q) = Eq[Llogp(u, ©)] — Eq[logq(©; )]

= logp(u) — KL(q(©; A)[[p(©]u)) < Logp(u)

(1)

such that when g(©; \) = p(©|u), we have ELBO = logp(u).
Monte Carlo approximation for ELBO with O ~ q(©; A)

S
ELBO(q) ’“% > [2ogp(u, ©))] — Eq(e)[Loga(©; A)]-

s=1
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Optimization strategy in Kucukelbir et al. (2017)

@ Due to several restrictions on the parameters, we transform the constraint
space Qf the copula parameters to the real coordinate space
© ={0;} ={Tj(©;)} =T(©), forj=1,...,N.

@ We assume a product of univariate Gaussian densities as the proposal
density,

q(8; p,0%) = on(B; p, 0%) = H¢(C:)'; 1j,07), (2)

@ Then, we apply the stochastic optimization to maximize the ELBO.

S
1 = o
ELBO(q) ~¢ 3 [Logp(u, T~ (By)) + Logldet ()]

s=1

—E,5)[10gq(6: V)]. (3)

M
1 1, ~
V A\ELBO v E Vi [logp(u., T (O(m)) + Log|det JT—I(e(m))|:|

m=1

— VaE,6)[1ogq(; M)]
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Table: Transformation functions from a constraint domain to the real domain

Parameter range 6=T(©)ecR 0 =T"}8) Jr1(8) = [)’][“;7;(@)
J— 0 _ _exph _ __exph
velon  T-neg() o= -l
0 € [0, ] 6=1o0g(0 6 = expl J = expll
0 € [L, o) 6 =1og (0 — L) 0 =expl+ L J = expll
J— 60 _ _ __expl
0€[-1,0] 0 = log (%) b=~ 1+e1xp5 J= (1+e:p(5)2
0 € [—00,0] G =1log(—0 0 = —expf J = —expl
0 € [—o0, U] G =1og(U—9) 0= U —expl J = —expl
q_ 0—L _ L4Uexpd _ (U=L)expd
0 €L Ul §=1og (m> 0= Litex J= Wb
6 € [~o0, 0] G=0 0=20 J=1

Hoang Nguyen
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Bivariate copula families and their characteristics
Table: Bivariate copula families and their characteristics
Copula Notation Copula distribution function Prior’ Range Kendall's 7
Gp Conlu, v 0) = G2(® (). & (v): 0) me(®) = mon(0) = Ge(0.1) 2
Gaussian i Cg:(u 110) = o (), 6~ v):0) 76p(0) = man(0) o e (-1,0) Zarcsin(6)
Stodent-t T Cro(u,vi0,0) = To(T,, (), T, (v); 0.v) m(0) = n(0) = 2= 0€(0,1),v€(2,30) Zarcsin(t)
Tn Crnluvi0,v) = To(Ty (0), To'(v): 0.0) wr() = Gamma( 01) e (-L0Lve (2,30)
c Celuvit) = (' +v ' —1) 7 2 A
Clayon Cuo Cornolu, vi6) =1 — u— v+ Ce(l— u,1— vi0) me(0) = mewo(9) = iy 0 €(0.0) 7
Coo Ceoolu,vi0) = v — Cc(1—u,v;—0) _ _ N 0
o Coomlv:0) = u— Ce(w, 1~ v —0) i il 0€(=9
G Colu,vi0) = ex‘p[ {(~10gu)” + (~10gv)’}" ”] be ) 11
Gumbel Giso Corao(u,vi0) =1—u— v+ Ce(l—u,1—v;0) no(0) = & ’
Goo Caoo(u, vif) = u— Ca(l - u,v; —6) e (—o0-1] 11
[o) Coanolu,vi0) = v = Co(u,1— v;—6) . 7
Frank Fy Crp(u,vi0) = —L1og (1 - U=2 ﬂ;{‘ < ”:1 T(0) = (1 - B(6) +2D1(6)) 6 € (0,00) 1401 Di(6)
Fa Cra(u,v;0) = —31og (1 - Ge M2 7D ~ Cauchy(6;0,6) 0 € (—0,0)
9 o ; ) i S0 121/ .
Joe J Cou,vif) =1 {(1— )" + (1 - )" — (1 - u)’(1 - v)} m(0) = E R A 0e1,00) 1- 427““”“”“*’””)
Jso Chso(u,vi0) =1—u—v+C(l—u,1-v;0) ~ wap -
— S Bk ./ >
Joo Croo(u,vi8) = v — Cy(1 — u,v; —6) i(0) = Ex&x—”z[;wm—n—;ﬂ e (-0, 1] PRSP S
S0 Coano(u, vi) = u— Cy(u, 1 — v;—0) ~ ohy ket
7 Glu,v) = uv - B 0
PAGEEYN 4= denotes the Debye function of order one. B(6) = 5= denotes the Bernoulli function

The table shows. some common bivariate copula functions as well a5 their characteristics such as parameter ranges, and Kendall's  correlation. We divide the symmetric copula
functions into positive and negative Kendall’s 7 correlation copulas to prevent the identification issue of the factor copula models.

Hoang Nguyen

Variational Inference for high dimensional structured factor copulas



Appendix
00000e00

Empirical comparison - Stock returns

Kendall, of ivariate copuas n the 15t ree Degree offeedom v of bivariate copulas it 1t ree

Kendal v, of bvariae copulas inthe 2nd ree

The figure shows the histogram of the Kendall-7 correlation in the bi-factor model
estimated at the posterior means. The first tree layer is on left top corner and the
second tree is on left bottom corner. The histogram of degree of freedom v is on top
right corner. Note that, v = 0 represents for non Student-t bivariate copulas.

Hoang Nguyen Variational Inference for high dimensional structured factor copulas



Appendix
00000080

Empirical comparison - Temperatures

Kendall, of ivariate copuas n the 15t ree Degree offeedom v of bivariate copulas it 1t ree

Kendal v, of bvariae copulas inthe 2nd ree

The figure shows the histogram of the Kendall-7 correlation in the bi-factor model
estimated at the posterior means. The first tree layer is on left top corner and the
second tree is on left bottom corner. The histogram of degree of freedom v is on top
right corner. Note that, v = 0 represents for non Student-t bivariate copulas.

Hoang Nguyen Variational Inference for high dimensional structured factor copulas



Appendix
0000000

Sensitivity to Transformations

Consider a posterior density in the Gamma family, with support over R.,. Figure 9 shows three con-
figurations of the Gamma, ranging from Gamma(1,2), which places most of its mass close to 6 = 0, to
Gamma(10, 10), which is centered at 6 = 1. Consider two transformations T, and T,

T,:0—log(0) and T,:06 — log(exp(6)—1),

both of which map R., to R. ADVI can use either transformation to approximate the Gamma posterior.
Which one is better?

Figure 9 show the Apbvi approximation under both transformations. Table 2 reports the corresponding KL
divergences. Both graphical and numerical results prefer T, over T;. A quick analysis corroborates this.
T, is the logarithm, which flattens out for large values. However, T, is almost linear for large values
of 6. Since both the Gamma (the posterior) and the Gaussian (the apvi approximation) densities are
light-tailed, T, is the preferable transformation.

—— Exact Posterior

‘B’ —— ADVI with T}
a —_ ith
5 1 1 1 ADVI with Ty
[=]
0 1 2 0 1 2 0 1 2 0
(a) Gamma(1,2) (b) Gamma(2.5,4.2) (¢) Gamma(10,10)

Figure 9: ApvI approximations to Gamma densities under two different transformations.
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