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Introduction

Investors usually face important problems when measuring the
return sensitivity of financial assets. Practically, a multivariate
volatility model for financial returns is employed where the stan-
dardized innovations are assumed to have either a multivariate
Gaussian or a multivariate Student-t distribution. Despite that
the number of parameters becomes explosive, such multivariate
models still can be very restrictive. A recent approach, factor
copulas as the truncated C-vines rooted at the latent variables
are proposed for tackling the problem.

IEach marginal returns are filtered out its autocorrelation, for
example, ARMA-GARCH process.

IThe joint dependence of the standardized innovations are
modelled flexibly by different copula models.

I It is assumed that each standardized innovation is affected by
some common latent factors. Conditional on these factors, the
returns are independent.

Main contribution

We propose new models of time varying dependence in high di-
mensional time series and use the Bayesian approach to estimate
the different factor copula models.

IThe dynamic factor loadings are modelled as generalized
autoregressive score (GAS) processes imposing a dynamic
dependence structure in their densities.

IThe high dimensional problem is handled with a factor structure
which also allows the inference strategy to run in a parallel
setting.

IUsing group hyperbolic skew Student copula (HSST), we obtain
different tail behaviour and asymmetric dependence among
financial time series.

IThe model is extendible in which deleting or adding more
variables does not change the form of model results and the
number of parameters scales linearly with the dimension in
parametric models.

Marginal model for each return series

Let rt = (r1t, . . . , rdt) be a d -dimensional financial return time
series at time t where t = 1, . . . ,T . Each marginal returns i are
filtered out the conditional mean and conditional variance using
AR(k)− GARCH(p, q) model:
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The standardized innovations ηit are taken from the filter. Note
that other models such as EGARCH, IGARCH, GJR-GARCH,
Stochastic volatility also could be applied. We make use of factor
copulas to define the dependence structure over uit = Fi(ηit|ϑi)
which is known to be an uniform U(0,1) distribution for i =
1, ..., d . Thus, the joint cdf of the vector Ut = (u1t, ..., udt), F ,
is given by a copula cdf

F (u1t, ..., udt|θt) = C (u1t, ..., udt|θt)
The computation for the marginal likelihood C (u1t, ..., udt|θt) is
often expensive due to the integral over the latent space, see [1].
Here, we consider an alternative approach that is more practical
in the spirit of [2] and [3]. The idea is to use marginal inverse cdf
transformations of ut and model their dependence using different
linear and non-linear functions, somehow coming back to standard
factor models that had been widely discussed in the literature.

Figure 1: Copula domain to real domain

Dynamic Hyperbolic skew Student copula model

The pseudo observable xit are achieved from copula data xit = F−1
HSST(uit|νg , γg). xt follow multi-

variate HSST distribution then ut are Hyperbolic Skew student copulas

xit = γgζgt +
√
ζgt(ρitzt +

√
1− ρ2

itεit) (1)

where εit ∼ iidN(0, 1). In this case, zt ∼ iidN(0, 1) is one state latent variable which affects each
individual pseudo-observable innovation xit. ζgt ∼ Inv − Gamma(

νg
2 ,

νg
2 ) is the mixing variable who

shares the same value for asset i belong to the same group (i ∈ Ag , g = 1, . . . ,G ). γg accounts
for the asymmetric distribution. Then, the correlation matrix Rt = ρtρ

′
t + diag(1 − ρ2

t) where
ρt = (ρ1t, . . . , ρdt). The dynamic process of ρt are modelled as an observation driven process of a
modified logistic transformation of ft = (f1t, . . . , fdt) which guarantees ρit ∈ (−1, 1).

ρit =
1− exp (−fit)
1 + exp (−fit)

fi ,t+1 = (1− bg) fi0 + agsit + bg fit

sit =
∂logp(uit|zt, ζt, γg , ft,Ft, θ)

∂fit

(2)

fit are proposed based on the GAS Model (see [4]) in which the score sit depends on the complete

density. Also let x̃it =
xit−γgζgt√

ζgt
, the equation (2) becomes
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Bayesian Estimation

For d = 100, T = 1000, iterations = 10.000, it took 13 minutes, 35 minutes, 45 minutes for
Gaussian, Student, HSST copulas on Intel i7-4770 PC (4 cores - 8 threads - 3.4GHz).
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Figure 2: Box plots for Posterior estimation of ag , bg , νg , γg with simulated data

Empirical Results

We illustrate an empirical example using d = 140 stock returns from 01/01/2007 to 01/09/2014
of the companies listed in S&P 500 index. The daily data contain T = 2000 observation days. We
use AR(1)− GARCH(1, 1)− HSST innovation to marginalize each stock returns.

Table 1: Estimation results for alternative copula models

Gaussian Gaussian Gaussian Student-t Student-t Student-t MGSt MGSt MGSt
block equi 1G multi.group block equi 1G multi.group block equi 1G multi.group

(1) (2) (3) (4) (5) (6) (7) (8) (9)
AIC -163400 -164422 -164658 -192501 -189064 -192197 -197143 -189184 -196901
BIC -163198 -163627 -163739 -192232 -188262 -191211 -196807 -188377 -195848
DIC -166377 -167382 -167622 -211507 -208358 -212414 -212257 -208539 -213090

# params 36 142 164 48 143 164 60 144 188
a [0.032,0.090] 0.070 [0.056,0.146] [0.023,0.067] 0.026 [0.025,0.067] [0.025,0.064] 0.026 [0.026,0.069]
b [0.968,0.997] 0.971 [0.855,0.984] [0.984,0.999] 0.992 [0.945,0.995] [0.981,0.999] 0.992 [0.956,0.995]
ν [6.814,11.907] 11.421 [6.816,11.870] [7.778,23.391] 11.378 [7.885,23.086]
γ [-1.230,-0.179] -0.106 [-1.215,-0.184]
fc [1.215,1.858] [0.957,2.360] [0.965,2.369] [1.278,1.997] [1.286,2.727] [1.030,2.442] [1.250,1.986] [1.288,2.716] [1.015,2.432]

Discussion and Extension

IThe more complex copula functions based on
the distribution of ζgt

IComputational expensive on xit = F−1(uit|θ)

IDynamic multi-skewness factor copulas.

IUnderstanding about the tail behaviour of the
hyperbolic skew Student-t copula

ITaking into account more factors

IUsing GPU to fasten the inference process.
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