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Abstract

To account for asymmetric dependence in extreme events, we propose a dynamic generalized

hyperbolic skew Student-t factor copula where the factor loadings follow Generalized Autoregres-

sive Score (GAS) processes. Conditioning on the latent factor, the components of the return

series become independent, which allows us to run Bayesian estimation in a parallel setting.

Hence, Bayesian inference on different specifications of dynamic one factor copula models can

be done in a few minutes. Finally, we illustrate the performance of our proposed models on

the returns of 140 companies listed in the S&P500 index. We compare the prediction power of

different competing models using Value-at-Risk (VaR), and Conditional Value-at-risk (CVaR),

and show how to obtain optimal portfolios in high dimensions based on minimum CVaR.

Keywords: Bayesian inference; Factor copula models; GAS model; Generalized hyperbolic

skew Student-t factor copula; Parallel estimation.
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1 Introduction

Copulas have become an essential tool for modelling non-standard multivariate distributions as they

allow for skewness and fat tails in the marginal distributions and a non-linear dependence structure,

see Cherubini et al. (2011), Patton (2012) and Fan and Patton (2014), among others. With a few

time series, standard copula families such as the elliptical and the Archimedean copulas are usually

applied. However, when the dimension is large, the use of these standard copula distributions

is problematic. For instance, the Student-t copula is only able to fit well a few time series, see

Demarta and McNeil (2005) and Creal and Tsay (2015). Also, asymmetric dependence is often

found, revealing greater correlation during bear markets than during bull markets, see e.g. Erb

et al. (1994), Longin and Solnik (2001), Ang and Chen (2002), and Lucas et al. (2014).

The aim of this paper is to propose a parallel Bayesian procedure for handling a large set

of financial returns using factor copula models. For that, we use EGARCH processes to model

the individual returns. Then, the series of standardized innovations are converted into a series

of Uniform(0,1) observations, using cumulative distribution functions, that are assumed to have

a copula distribution. To handle a large number of returns, we assume a one factor structure

that, first, drastically reduces the number of parameters as they scale linearly with the dimension,

and, second, provides natural economic interpretations. To account for asymmetric dependence in

extreme events, we propose a group dynamic multivariate generalized hyperbolic skew Student-t

(MGSt) factor copula where the factor loadings follow Generalized Autoregressive Score (GAS)

processes, see Creal et al. (2013) and Harvey (2013). Importantly, we assume that the dynamic

factor loadings equation depends on the copula density conditional on the factor rather than the

unconditional copula density, as proposed in Oh and Patton (2017b). The main benefit of our

approach is that it allows us to perform parallel inference which greatly reduces the computational

cost. Hence, a sizable problem can be fitted from a few minutes up to one hour with a personal

computer. The MGSt copula allows for different tail behavior and asymmetric dependence among

financial returns.

Factor copulas models have been used previously in the literature as a solution for the curse

of dimensionality. For instance, Hull and White (2004) propose a model based on combining

linearly the common factor risk and idiosyncratic risk for the Gaussian copula for valuing tranches
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of collateralized debt obligations and nth to default swaps. Andersen and Sidenius (2004), and

van der Voort (2007) improve the model by considering a non-linear factor structure while Murray

et al. (2013) extend for multi-factor Gaussian copulas. Oh and Patton (2017a) consider non-normal

distributions for the latent factors and the innovations. On the other hand, Krupskii and Joe

(2013) propose a general class of factor copulas where the dependence structure is decomposed into

a sequence of bivariate copulas and conditional bivariate copulas between each copula variable and

the latent factors. Specifically, if bivariate Gaussian linking copulas are used, then the factor copula

model can be seen as a copula version of the multivariate Gaussian distribution with a correlation

matrix that has a factor structure. Otherwise, if bivariate non-Gaussian linking copulas are used,

the model is able to model tail asymmetry and tail dependence, that are important characteristics of

financial returns. Nevertheless, Krupskii and Joe (2013) consider the case in which the parameters

of the copula functions are static. Close to our research line, Creal and Tsay (2015) propose a class

of dynamic stochastic factor copulas. They employ sequential Monte Carlo methods to draw paths

of factor loadings and show an empirical illustration with multi-group Student-t one factor copulas.

However, the computation cost is expensive even in a parallel setting. Oh and Patton (2017b) offer

a dynamic skewed Student-t one factor copula. They apply a variance target strategy to reduce

computation cost and use maximum likelihood estimation to estimate the parameters.

Recently, several dynamic copula GARCH models have been proposed for stock returns and

exchange rates, where the time-varying parameters are driven by a mean or higher moment functions

of lagged information, see Jondeau and Rockinger (2006), Patton (2006a), Auśın and Lopes (2010)

and Christoffersen et al. (2012), among others. However, these dynamic models encounter several

problems such as specifying how many lag periods and what appropriate dynamic functions should

be used. Alternatively, the GAS process, proposed by Creal et al. (2013) and Harvey (2013), is an

observation driven process in which the dynamic behavior depends on the score of the predictive

likelihood. Particularly, Koopman et al. (2016) find evidence with several simulations and empirical

data analysis that the GAS model outperforms models based on moment updating. Oh and Patton

(2017b) derive the factor loadings of copula GAS models based on the numerical differentiation

of the joint copula density which is computationally expensive in high dimensions. Instead, we

consider the latent variables as a source of exogenous information and modify the score based on

the predictive likelihood conditional on this exogenous source. This strategy has been used in Lucas
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et al. (2018) for analyzing high-dimensional banking data through mixture models. Furthermore, we

account for the asymmetric dependence in upper and lower tails using the MGSt copula and divide

the assets into group sectors. Hence, shocks can affect a group of assets in some circumstances

rather than jointly to all series.

In general, the multivariate generalized hyperbolic distribution could be formulated as a location-

scale mixture of multivariate Gaussian distributions, see McNeil et al. (2010). Additionally, the

multivariate generalized hyperbolic skew Student-t has been proposed for modelling dynamic mul-

tivariate stock returns in Menćıa and Sentana (2005), for dynamic copula models in Lucas et al.

(2017) and for factor stochastic volatility models in Li and Scharth (2018), among others. In com-

parison to Lucas et al. (2017), we assume a factor structure to reduce the number of parameters in

high dimensions. Moreover, we divide variables into groups to model the tail dependence among

them. Different from Li and Scharth (2018), we allow for flexible marginal distributions for the

returns and concentrate on the dependence structure rather than jointly model the dynamic of

conditional mean and conditional volatility.

We compare our proposed dynamic factor copula models with the Exponential Weight Mov-

ing Average (EWMA) and Dynamic Conditional Correlation models (DCC), see Engle and Kelly

(2012). We find that our proposal performs better for high dimensional time series generated in

different stress test scenarios. We also consider several copula specifications including the Gaussian

and the Student-t as special cases of the generalized hyperbolic Skew Student-t copulas. We show

an empirical example of 140 asset returns for companies listed in S&P 500 index. We found the

strongest lower tail dependence among stocks in the Insurance and Finance sectors while other sec-

tors such as Food and Beverage, Pharmacy, and Retail only reveal weak lower tail dependence. We

also perform optimal portfolio allocation based on minimization of the CVaR. We use the penalized

quantile regression method to prevent extreme positive and negative weights. It also overcomes the

computational difficulties in comparison with traditional optimization methods.

The rest of the paper is organized as follows. Section 2 introduces the model for univariate

marginal returns and specifies our proposal to model the dependence structure with different types

of dynamic factor copula models. We present our parallel Bayesian inference strategy in Section

3 and describe how to perform return prediction and risk management in Section 4. Section 5

illustrates the performance of factor copula models with simulated examples. In Section 6, we
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analyze a large series of stock returns listed in S&P 500 and compare the prediction power of

models using VaR and CVaR. Section 6 also compares the optimal portfolio allocation based on

minimizing variance and minimizing CVaR. Finally, conclusions are drawn in Section 7.

2 Dynamic factor copula models

In this section, we introduce our modeling strategy based on the spirit of Creal and Tsay (2015),

Oh and Patton (2017a) and Oh and Patton (2017b). For that, the first step is to assume a simple

AR−EGARCH structure (Nelson, 1991) on the individual returns and then assume a one factor

copula structure on the transformed standardized innovations.

2.1 Model specification

Let rt = (r1t, . . . , rdt)
′, for t = 1, . . . , T , be a d-dimensional financial return time series. We assume

that each individual return, rit, for i = 1, . . . , d, follows a stationary AR (ki) − EGARCH (pi, qi)

model given by:

rit = ci + φi1ri,t−1 + . . .+ φikiri,t−ki + ait

ait = σitηit

log(σ2
it) = ωi +

pi∑
j=1

βijlog(σ2
i,t−j) +

qi∑
j=1

[αijηi,t−j + γij(|ηi,t−j | − E|ηi,t−j |)]

where ci is a constant, φi1, . . . , φiki are autoregressive parameters verifying the usual stationarity

conditions, ait is a sequence of innovations or shocks, σ2
it is the conditional volatility of the return

rit, ηit is a sequence of independent standardized innovations with continuous distribution function

Fηi , ωi is a constant, and αi1, . . . , αiqi , βi1, . . . , βipi , γi1, . . . , γiqi are EGARCH parameters verifying

the usual stationarity conditions. Hence, the EGARCH model takes into account the negative

correlation between stock returns and changes in return volatility. We note that the previous

AR−EGARCH model can be replaced with any other appropriate specification. For instance, the

autoregressive process may be reduced to a simple constant or replaced with an ARMA process,

while the EGARCH specification can be replaced with an GARCH (Bollerslev, 1986) or a GJR−

GARCH process (Glosten et al., 1993).
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Once appropriate models have been specified for all the return series, we can make use of

copulas to model their dependence structure. For that, it is well known that uit = Fηi (ηit),

for each i = 1, . . . , d, is a sequence of independent random variables with a U (0, 1) distribution

and the dependence structure among the variables in the vector ut = (u1t, . . . , udt)
′ is given by

an unknown copula function. A standard approach is to assume that ut has either a Gaussian

copula or a Student-t copula distribution. Nevertheless, it is questionable whether such copula

functions are appropriate. One plausible alternative is to assume, as in Krupskii and Joe (2013),

a factor copula model in which u1t, . . . , udt are conditionally independent given a small set of

latent variables. Nevertheless, we consider instead an approach in the spirit of Creal and Tsay

(2015), Oh and Patton (2017a) and Oh and Patton (2017b). The idea is to focus on a family of

copula models including, among others, the Gaussian, Student-t and generalized hyperbolic skew

Student-t copulas, which depend on a conditional scale matrix parameter, Rt, characterized by a

factor structure, somehow coming back to standard factor models widely analyzed in the literature.

As in Oh and Patton (2017b), we model the dynamic factor loadings as GAS processes, but we

assume that the dynamic factor loading equations depend on the copula density conditional on

the latent factor rather than the unconditional copula density that allows us to perform parallel

inference which heavily reduces the computational cost needed to obtain the conditional posterior

distributions of model parameters.

In the next subsections, we describe in detail our proposed dynamic generalized hyperbolic skew

Student-t one factor copula model which reduces to Gaussian and Student-t as special cases. We

also present some of their advantages over existing alternatives. To simplify, we first present the

Gaussian case and then the most general case.

2.2 Dynamic Gaussian one factor copula model

In this subsection, we assume that ut follows a Gaussian copula with correlation matrix parameter

Rt and joint distribution function C(u1t, . . . , udt | Rt) = Φd

(
Φ−1(u1t), . . . ,Φ

−1(udt) | Rt
)
, where

Φ(·) denotes the univariate standard Gaussian cdf and Φd(· | Rt) denotes the multivariate Gaussian

cdf with zero mean vector and correlation matrix Rt. Therefore, the vector of inverse cdf trans-

formations, xt = (x1t, . . . , xdt)
′, where xit = Φ−1 (uit), for each i = 1, . . . , d, follows a multivariate

Gaussian distribution with zero mean vector and correlation matrix Rt. We assume a dynamic
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Gaussian one factor copula model for xt given by:

xt = ρtzt +Dtεt, (1)

where zt, the latent factor, is a sequence of independent and identically standard Gaussian dis-

tributed random variables, ρt = (ρ1t, . . . , ρdt)
′, is the vector of factor loadings, Dt is a diagonal

matrix with elements
√

1− ρ2
it, for i = 1, . . . , d, and εt = (ε1t, . . . , εdt)

′, is a sequence of independent

and identically standard multivariate Gaussian random variables. The latent factor zt, the idiosyn-

cratic noise εt, and the dynamic correlations ρt are contemporaneously independent. However, the

dynamic correlations ρt are derived based on the past information of the latent and copula data

at time t− 1. Consequently, the components of the multivariate random vector xt = (x1t, . . . , xdt)
′

are conditionally independent given the latent factor zt and the factor loading vector ρt, whose ele-

ments, ρit, represent the correlation between xit and zt, for t = 1, . . . , T . Therefore, the conditional

correlation matrix is given by Rt = ρtρ
′
t + DtD

′
t. Observe that for the static case, the described

model coincides with the one factor Gaussian copula model proposed in Krupskii and Joe (2013).

In a dynamic framework, we allow the components of the correlation vector ρt = (ρ1t, . . . , ρdt)
′ to

vary across time as follows,

ρit =
1− exp (−fit)
1 + exp (−fit)

fi,t+1 = (1− b) fic + asit + bfit

sit =
∂ log p (ut|zt, ft,Ft, θ)

∂fit

(2)

for i = 1, . . . , d, where fit is an observation driven process which fluctuates around a constant value

fic, a and b are two parameters that are assumed to be constant across assets, such that |b| < 1

to guarantee stationarity, and p (ut|zt, ft,Ft, θ) is the conditional probability density function of

ut given the latent variable, zt, the random vector ft = (f1t, . . . , fdt)
′, the set of all information

available at time t, denoted by Ft = {U t−1, F t−1}, where U t−1 = {u1, . . . , ut−1} and F t−1 =

{f0, . . . , ft−1} , and the vector of static parameters, θ = (a, b, f1c, . . . , fdc)
′. Note that ρit is assumed

to follow a modified logistic transformation, used also in Dias and Embrechts (2010), Patton (2006b)

and Creal et al. (2013), to guarantee that ρit ∈ (−1, 1). Also observe that fi,t+1 depends linearly

on fit and the adjustment term sit. Clearly, this model reduces to a Gaussian time-invariant one
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factor copula model, see Murray et al. (2013) and Oh and Patton (2017a), when a = b = 0.

The dynamic equation (2) is inspired by the GAS model, see Creal et al. (2013) and Harvey

(2013), in which the score sit depends on the complete density of ut rather than on its first or second

moment. Blasques et al. (2015) proved that the use of the score sit leads to the minimum Kullback-

Leibler divergence between the true conditional density and the model-implied conditional density,

while Koopman et al. (2016) showed some empirical examples where the GAS model outperforms

other observation driven models. In addition, we consider here the latent variable zt as a source

of exogenous information and derive the observation density conditional on this source. The main

reason for such a choice is to reduce dramatically the computational burden as the score sit has

a closed form expression that allows us to parallelize the derivation of the d processes s1t, . . . , sdt.

Specifically, as shown in Appendix A.1, sit is given by,

sit =
1

2
xitzt +

1

2
ρit − ρit

x2
it + z2

t − 2ρitxitzt

2
(
1− ρ2

it

) , (3)

for i = 1, . . . , d. Therefore, sit depends on the values of the pseudo observable xit, the latent

variable zt, and their mutual correlation ρit. The model is also attractive, as will be shown in the

next subsections, sit has a similar structure to the one given in (3) for the dynamic Student-t and

generalized hyperbolic skew Student-t one factor copula models.

As noted before, the main difference of our proposed model with respect to the dynamic GAS

model defined in Oh and Patton (2017b) is that the score in (2) is conditioned on the latent variable,

zt. We show in Appendix B that

sOPit =
∂ log p (ut|ft,Ft, θ)

∂fit
= Ezt

[
∂ log p (ut|zt, ft,Ft, θ)

∂fit

∣∣∣∣ ut, ft, θ] = Ezt [sit| ut, ft,Ft, θ] .

Thus, the score function (3) is the expectation of the proposal score sit over zt where zt follows

p(zt|ut, ft,Ft, θ) distribution. Therefore, since zt is sampled from its posterior p(zt|xt, ft,Ft, θ), one

should expect the use of sit in (3) to be similar to the use of the score function in Oh and Patton

(2017b). As mentioned before, our proposed specification allows us to obtain the expressions for

sit in parallel for i = 1, . . . , d, reducing the computational burden. This contrasts with Oh and

Patton (2017b) where the expressions for sOPit are obtained by the numerical differentiation of the

8



joint copula density, which is much more computationally expensive.

2.3 Dynamic generalized hyperbolic skew Student-t one factor copula model

Next, we use the generalized hyperbolic skew Student-t (GSt) distribution proposed by Aas and

Haff (2006) to extend the Gaussian factor copula model. The GSt distribution depends on two

parameters, ν and γ, which control the generation of extremes events and skewness, respectively.

The GSt distribution reduces to the Student-t distribution when γ = 0 and reduces to the Gaussian

distribution when γ = 0 and ν →∞.

Here, we assume that the joint distribution function of ut is given by C(u1t, . . . , udt | Rt, ν, γ) =

FMGSt

(
F−1
GSt(u1t | ν, γ), . . . , F−1

GSt(udt | ν, γ) | Rt, ν, γ
)
, where FGSt( · | ν, γ) denotes the univariate

standard GSt cdf with degrees of freedom ν and skewness parameter γ, and FMGSt( · | Rt, ν, γ)

denotes the MGSt cdf with parameters ν and γ and scale matrix Rt. Hence, the MGSt copula allows

for asymmetric tail dependence which are not possible with the Gaussian copula assumption. Here,

the vector of inverse cdf transformations, xt = (x1t, . . . , xdt)
′, where xit = F−1

GSt (uit | ν, γ), for each

i = 1, . . . , d, follows a MGSt with zero location vector, scale matrix Rt, degrees of freedom ν, and

skewness parameter γ. Then, we assume a dynamic generalized hyperbolic skew Student-t one

factor copula model for xt given by:

xt = γζt +
√
ζt (ρtzt +Dtεt) (4)

for i = 1, . . . , d, where zt, εt and ρt, for t = 1, . . . , T , are as in the Gaussian case, and ζt is a sequence

of independent and identically inverse Gamma distributed random variables with parameters
(
ν
2 ,

ν
2

)
,

denoted by IG
(
ν
2 ,

ν
2

)
, and independent of zt, εt and ρt. Particularly, when γ = 0, xt follows

multivariate Student-t distribution as a special case. In any case, the components of the multivariate

random vector xt = (x1t, . . . , xdt)
′ are contemporaneously independent at time t given zt, ρt and

ζt. However, note that ρt depends on the past values of xt, zt and ζt through the GAS process.

As in the Gaussian case, the vector ρt = (ρ1t, . . . , ρdt)
′ is allowed to vary across time as in (2),

but replacing the value of the score sit with,

sit =
∂ log p (ut|zt, ζt, ft,Ft, θ)

∂fit
,
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where p (ut|zt, ζt, ft,Ft, θ) is the conditional probability density function of ut given zt, ζt, ft, Ft,

and the parameters of the copula function, θ = (a, b, ν, γ, f1c, . . . , fdc)
′. Again, this model setting

is influenced by the developments in Creal and Tsay (2015) for stochastic factor copulas and Oh

and Patton (2017b) for dynamic factor copulas. However, one advantage of our proposal is that

the observation driven process remains similar. As shown in Appendix A.2, if we let x̃it = xit−γζt√
ζt

,

the score function is,

sit =
∂ log p(ut|zt, ζt, ft,Ft, θ)

∂fit
=

1

2
x̃itzt +

1

2
ρit − ρit

x̃2
it + z2

t − 2ρitx̃itzt

2
(
1− ρ2

it

) , (5)

which is similar to the score function in (3). Consequently, we enjoy here the same computational

advantages described in the Gaussian case. On the other hand, this proposed model is different

from the skew Student-t factor copula model in Oh and Patton (2017a) and Oh and Patton (2017b)

since these authors consider different symmetric and asymmetric Student-t distributions for zt and

εt. Their models do not lead to an easily attainable conditional cdf for xt and therefore, it is

computationally expensive to derive the score sit, as mentioned before.

Demarta and McNeil (2005) noted that the marginal univariate GSt only has finite variance

when ν > 4 in comparison with the Student-t distribution which requires ν > 2. They also differ

in the tail decay. While the Student-t density has the tail decay as x−ν−1, the GSt density has a

heaviest tail decay as x−ν/2−1 and the lightest tail as x−ν/2−1 exp (−2|γx|) (for γ 6= 0). We obtain

the tail dependence of the dynamic MGSt one factor copula model using a numerical approximation

of the joint quantile exceedance probability, see Appendix C. Finally, Demarta and McNeil (2005)

suggested several extensions for more complex copula functions. For example, when ζt follows a

generalized inverse Gaussian distribution, xit is generalized hyperbolic distributed. Also, one could

propose different distributions of the type xit = γgh (ζt) +
√
ζt

(
ρitzt +

√
1− ρ2

itεit

)
, where h (ζt) is

a function of ζt. However, the properties of xit would generally be intractable.

2.4 Dynamic group generalized hyperbolic skew Student-t one factor copulas

One potential drawback of the previous models is that only a few parameters control all of the tail

co-movements which can be very restrictive for high dimensional returns. In order to relax this

assumption, our strategy is to split the d assets into G groups in such a way that returns in the
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same group have similar characteristics.

Therefore, we write ut = (u′1t, . . . , u
′
Gt)
′, where ugt =

(
u1gt, . . . , unggt

)′
, for g = 1, . . . , G and∑G

g=1 ng = d. In the most general case of the MGSt copula, we define xigt = F−1
GSt (uigt|νg, γg) for

each asset i, for i = 1, . . . , ng, belonging to group g, where g = 1, . . . , G, such that,

xgt = γgζgt +
√
ζgt (ρgtzt +Dgtεgt) (6)

where xgt =
(
x1gt, . . . , xnggt

)′
is the vector of inverse transformations in group g, ρgt =

(
ρ1gt, . . . , ρnggt

)′
is the vector of factor loadings in group g, and Dgt is the diagonal matrix with elements

√
1− ρ2

igt

and εgt =
(
ε1gt, . . . , εnggt

)′
are, respectively, the corresponding diagonal matrix and noise vector in

group g.

Observe that the set of mixing variables ζt = (ζ1t, . . . , ζGt)
′ create G multivariate MGSt distri-

butions with degrees of freedom parameters ν1, . . . , νG and skewness parameters γ1, . . . , γG, respec-

tively. Then, the dynamic of the i-th the scale parameters in group g is given by:

ρigt =
1− exp (−figt)
1 + exp (−figt)

fig,t+1 = (1− bg) figc + agsigt + bgfigt

(7)

where the set of parameters a = (a1, . . . , aG)′ and b = (b1, . . . , bG)′ adjust the dynamic behavior of

the scale parameters in each group g. Here, the i-th score in group g is given by:

sigt =
1

2
x̃igtzt +

1

2
ρigt − ρigt

x̃2
igt + z2

t − 2ρigtx̃igtzt

2
(

1− ρ2
igt

) (8)

where x̃igt =
xigt−γgζgt√

ζgt
. Note that when G = 1, the model reduces to the copula specification

proposed in the previous section.

The model becomes extremely flexible by assuming that each series has its own dynamic group.

Indeed, the model is able to capture the different behaviors in the upper and lower tail dependence

for those assets in the same group. However, note that the assets in different groups show no tail

dependence due to the independence assumption among the components of ζt. Also, the pseudo

observable xigt = F−1
GSt (uigt|νg, γg) requires an intensive computation as long as νg and γg receive

11



new trial values. A parallel Bayesian algorithm is implemented in the next section to speed up

calculations.

3 Bayesian inference

In this section, we present our parallel Bayesian inference strategy to obtain the posterior dis-

tribution of the model parameters of the dynamic one-factor copula models presented in Section

2.

3.1 Prior distributions

We focus on defining a prior distribution for the copula parameters. In all cases, we use proper but

uninformative prior assumptions. We describe the prior for the most general proposed model, the

group MGSt factor copula, which contains all other models as particular cases. First, we assume

uniform priors for all the elements in fc = {figc : g = 1, . . . , G; i = 1, . . . , ng}. More precisely, we

assume a priori that figc ∼ U (−5, 5), so that the value of ρigc ranges between (−0.9866, 0.9866).

Additionally, f11c is restricted to be positive to guarantee model identifiability. Second, as usual

in GAS models, we assume uniform priors for all the elements in a = {ag : g = 1, . . . , G} and

b = {bg : g = 1, . . . , G}. More precisely, we assume a priori that ag ∼ U (−0.5, 0.5) and bg ∼ U (0, 1).

Third, we assume a prior shifted Gamma distributions for all the degrees of freedom parameters

in ν = {νg : g = 1, . . . , G}, such that νg = 4 + ν̃g, where ν̃g ∼ G (2, 2.5), in order that the

variance of the pseudo observations, xit, is finite. Fourth, we assume a priori a standard Gaussian

distribution for all the skewness parameters in γ = {γg : g = 1, . . . , G}, i.e., a priori γg ∼ N(0, 1),

for g = 1, . . . , G. In the particular case of a Student-t copula, we assume that νg follows a priori

a shifted Gamma distribution with νg = 2 + ν̃g, such that the variance of xit is finite and set the

skewness parameter γg = 0.

Finally, the latent states z = {zt : t = 1, . . . , T} are treated as nuisance independent parameters

following independent N (0, 1) distributions, as considered in the model assumptions. Additionally,

the elements of ζ = {ζgt : g = 1, . . . , G; t = 1, . . . , T} are nested as nuisance parameters for the

realization of the pseudo observations xit and depend on the respective elements of ν.
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3.2 Posterior inference

Given a sample of return data, r = {rt : t = 1, . . . , T}, and the priors defined before, we are

interested in the posterior of the model parameters given by the set of marginal parameters,

ϑi = (ci, φi1, . . . , φiki , ωi, αi1, . . . , αipi , βi1, . . . , βiqi , γi1, . . . , γipi)
′, and the set of factor copula pa-

rameters, ϑc = (a, b, ν, γ, z, ζ, fc)
′. The likelihood is given by,

l (ϑ1, . . . , ϑd, ϑc | r) =
T∏
t=1

c(Fη1(η1t | ϑ1), . . . , Fηd(ηdt | ϑd) | ϑc)
d∏
i=1

fηi(ηit | ϑi),

where c (· | ϑc) denotes the copula density function with parameters ϑc and fηi(ηi | ϑi) is the

marginal density function of the standardized innovations, ηit. Given this decomposition of the

likelihood, we follow the standard two-stage estimation procedure for copulas where, in a first step,

we estimate the marginal parameters, ϑ̂i, independently using the maximum likelihood for each

i = 1, . . . , d, and, in a second step, we obtain an approximate sample of the copula observations,

u = {ut : t = 1, . . . , T}, where uit = Fηi

(
ηit | ϑ̂i

)
, for t = 1, . . . , T and for each i = 1, . . . , d. This

two-stage estimation procedure has been shown to be statistically efficient by Joe (2005) and Chen

and Fan (2006) in case of parametric and semi-parametric distributions for standardized residuals.

Alternatively, a fully Bayesian approach where the joint posterior distribution is approximated in

a single step would be done but the two-step approach simplifies enormously the computational

burden in the high dimensional setting that we are considering.

Now, considering the G different asset groups, we assume that the matrix sample of copula ob-

servations, u = {ut : t = 1, . . . , T}, is such that ut = (u′1t, . . . , u
′
Gt)
′, where ugt =

(
u1gt, . . . , unggt

)′
,

for g = 1, . . . , G. Then, the likelihood of the MGSt copula is given by:

l (ϑc | u) =

T∏
t=1

p (ut|zt, ζt, ft,Ft, θ) ,

where ft = (f1t, . . . , fGt)
′ with fgt =

(
f1gt, . . . , fnggt

)
, for g = 1, . . . , G. Recall that Ft =

{U t−1, F t−1}, where U t−1 = {u1, . . . , ut−1} and F t−1 = {f0, . . . , ft−1}, and θ = (a, b, ν, γ, fc)
′

is the vector of static parameters. Therefore, given the conditional density (11) in Appendix A.2,
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the likelihood is given by:

p (u|z, ζ, fc, a, b, ν, γ) =
T∏
t=1

G∏
g=1

ng∏
i=1

φ

(
F−1
GSt(uigt|ν)−γgζt√

ζgt
| ρigtzt,

√
1− ρ2

igt

)
fGSt

(
F−1
GSt (uigt | νg, γg) | νg, γg

)√
ζgt

.

As a result, the joint posterior density of the group dynamic MGSt factor copula parameters can

be written as follows:

p (z, ζ, fc, a, b, ν, γ|u) ∝
T∏
t=1

G∏
g=1

ng∏
i=1

φ(x̃igt|ρigtzt,
√

1− ρ2
igt)

fGSt (xigt|νg, γg)
√
ζgt

T∏
t=1

φ(zt|0, 1)

x
T∏
t=1

G∏
g=1

IG
(
ζgt|

νg
2
,
νg
2

) G∏
g=1

G (νg − 4|2, 2.5)

G∏
g=1

φ (γg|0, 1) ,

(9)

where x̃igt =
xigt−γgζgt√

ζgt
and xigt = F−1

GSt (uit | νg, γg).

The computation of the pseudo observable xigt = F−1
GSt(uigt|vg, γg) is often time-consuming

especially when the value of vg and γg change in each MCMC iteration. We create a sequence of

m = 1000 values with equal increment in the range xseq = [xLow, xHigh] and find their exact cdf

useq = FGSt(xseq|vg, γg). The approximate values of xigt is calculated as the linear interpolation

between two nearest neighbors in the sequence. We employ the algorithm in the SkewHyperbolic

package (Scott and Grimson (2015)) to find out the reasonable range [xLow, xHigh] which guarantees

to cover all the values of xigt and also that the relative difference between the approximate and the

exact value of xigt is no more than 1%.

3.3 MCMC algorithm

Here, a parallel algorithm is exploited to obtain a posterior sample of the model parameters. Due

to the fact that the conditional posterior of zt is Gaussian, we can make fast inference for each

latent variable at time t = 1, . . . , T . Also, the conditional posterior of ag, bg, νg, γg, and ζgt can be

sampled in parallel for the groups g = 1, . . . , G, where G is usually a moderate number. Finally,

since conditional on zt, each component of xt is independent, we can create a parallel estimation

procedure for figc for i = 1, . . . , ng and g = 1, . . . , G. Thus, the algorithm is scalable in high

dimensional returns.
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1. Set initial values for ϑ(0) =
(
z(0), f

(0)
c , a(0), b(0), ν(0), γ(0), ζ(0)

)
.

2. For iteration j = 1, . . . , N , obtain ρ
(j)
igt for i = 1, . . . , ng, g = 1, . . . , G and t = 1, . . . , T :

(a) For t = 1, . . . , T , sample z
(j)
t ∼ p

(
zt|u, a(j−1), b(j−1), f

(j−1)
c , ν(j−1), γ(j−1), z

(j)
1:(t−1), ζ

(j−1)
)

.

(b) Parallel for i = 1, . . . , ng and g = 1, . . . , G, sample

f
(j)
igc ∼ p

(
figc|u, a(j−1), b(j−1), z(j), ν(j−1), γ(j−1), ζ(j−1)

)
.

(c) Parallel for g = 1, . . . , G, sample a
(j)
g ∼ p

(
ag|u, b(j−1), f

(j)
c , z(j), ν(j−1), γ(j−1), ζ(j−1)

)
.

(d) Parallel for g = 1, . . . , G, sample b
(j)
g ∼ p

(
bg|u, a(j), f

(j)
c , z(j), ν(j−1), γ(j−1), ζ(j−1)

)
.

(e) Parallel for g = 1, . . . , G, sample ν
(j)
g ∼ p

(
νg|u, a(j), b(j), f

(j)
c , z(j), γ(j−1), ζ(j−1)

)
.

(f) Parallel for g = 1, . . . , G, sample γ
(j)
g ∼ p

(
γg|u, a(j), b(j), f

(j)
c , z(j), ν(j), ζ(j−1)

)
.

(g) Parallel for g = 1, . . . , G, sample ζ
(j)
gt ∼ p

(
ζgt|u, a(j), b(j), f

(j)
c , z(j), ν(j), γ(j), ζ

(j)
g,1:(t−1)

)
for t = 1, . . . , T .

The conditional posterior distributions for all the parameters are given in Appendix D. In the

algorithm, we apply the Gibbs sampler for step 2a and the Adaptive Random Walk Metropolis

Hasting (ARWMH) (see Roberts and Rosenthal (2009)) for steps 2b to 2f . As suggested by Creal

and Tsay (2015), we use the independent MH in step 2g to generate new values of log
(
ζ

(j)
gt

)
from

a Student-t distribution with 4 degrees of freedom with mean equal to the mode and scale equal to

the inverse Hessian at the mode. Logarithms guarantee that ζ
(j)
gt is positive. Thus, for each time

period t, we accept ζ
(j)
gt with probability:

min

1,
p
(
ζ

(j)
gt |u, a(j), b(j), f

(j)
c , z(j), ν(j), γ(j), ζ

(j)
g,1:(t−1)

)
q
(
ζ

(j−1)
gt

)
p
(
ζ

(j−1)
gt |u, a(j), b(j), f

(j)
c , z(j), ν(j), γ(j), ζ

(j)
g,1:(t−1)

)
q
(
ζ

(j)
gt

)
 .

Observe that this Bayesian algorithm reduces to steps 2a to 2d for the dynamic Gaussian one factor

copula. Also, step 2f is omitted for the dynamic Student-t one factor copula since γ = 0. The codes

and implementation of the algorithm are available at https://github.com/hoanguc3m/FactorCopula.
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4 Prediction of returns and risk management

In this section, we illustrate how the estimated copula models help to predict returns and measure

the risk of the portfolio such as portfolio variance, quantile of the portfolio’s profit/loss distribution

for a given horizon (VaR) and conditional expected loss above a quantile (CVaR). Finally, we

employ a simulation procedure to allocate an optimal portfolio based on minimum variance and

minimum CVaR.

4.1 Prediction of returns

Based on the MCMC samples from the conditional posterior distribution of copula parameters

ϑ
(n)
c =

(
a(n), b(n), ν(n), γ(n), z(n), ζ(n), f

(n)
c

)
, for n = 1, . . . , N , we can obtain the distribution of the

predicted return rt = {ri,t : i = 1, . . . , d} at time t = T + 1. For the sake of simplicity, we consider

AR(1) − EGARCH(1, 1) for the marginal and generate replications of one-step-ahead predicted

return (r
(n)
1t , . . . , r

(n)
dt ) as follows,

r
(n)
it = ĉi + φ̂i1ri,t−1 + a

(n)
it

a
(n)
it = σitη

(n)
it

log(σ2
it) = ω̂i + α̂i1ηi,t−1 + γ̂i1(|ηi,t−1| − E|ηi,t−1|) + β̂i1log(σ2

i,t−1)

where ϑ̂i =
(
ĉi, φ̂i1, ω̂i, α̂i1, β̂i1, γ̂i1

)′
is the set of marginal parameters in AR(1)− EGARCH(1, 1)

model. The standardized innovation is obtained as η
(n)
it = F−1

ηi (u
(n)
igt ) = F−1

ηi (FGSt(x
(n)
igt |ϑ

(n)
c )) and

the value of x
(n)
igt is generated from Equations (6 - 8) where ζ

(n)
gt ∼ IG(ν

(n)

2 , ν
(n)

2 ), z
(n)
t ∼ N(0, 1),

and ε
(n)
igt ∼ N(0, 1), i.e.,
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x
(n)
igt = γ(n)

g ζ
(n)
gt +

√
ζ

(n)
gt

(
ρ

(n)
igt z

(n)
t +

√
(1− ρ(n)2

igt )ε
(n)
igt

)

ρ
(n)
igt =

1− exp
(
−f (n)

igt

)
1 + exp

(
−f (n)

igt

)
f

(n)
igt =

(
1− b(n)

g

)
f

(n)
igc + a(n)

g s
(n)
ig,t−1 + b(n)

g f
(n)
ig,t−1

s
(n)
ig,t−1 =

1

2
x̃

(n)
ig,t−1z

(n)
t−1 +

1

2
ρ

(n)
ig,t−1 − ρ

(n)
ig,t−1

x̃
(n)2
ig,t−1 + z

(n)2
t−1 − 2ρ

(n)
ig,t−1x̃

(n)
ig,t−1z

(n)
t−1

2
(

1− ρ(n)2
ig,t−1

)
x̃

(n)
ig,t−1 =

x
(n)
ig,t−1 − γ

(n)
g ζ

(n)
g,t−1√

ζ
(n)
g,t−1

=
F−1(uig,t−1|γ(n)

g , ν
(n)
g )− γ(n)

g ζ
(n)
g,t−1√

ζ
(n)
g,t−1

We can also obtain the distribution of predicted return at time T +h , where h > 1, conditional

on the return information at time t = T +h− 1. As the return prediction needs information about

the latent variables zt and ζgt, we choose zt and ζgt as the maximum a posteriori of its conditional

posterior distribution when obtaining new data.

4.2 Risk measurement

Assume that we have a portfolio constructed with the return series r1t, . . . , rdt. Then, the total

return at time t is calculated as,

rt =
d∑
i=1

δitrit

where δt = {δit}di=1 is the set of asset weights in the portfolio at time t such that
∑d

i=1 δit = 1. The

q% VaR is the threshold loss value such that the probability of a loss exceeds VaR is q, over the

time horizon t, i.e.,

q = Pr

(
d∑
i=1

δitrit ≤ −VaRq,t

)
.

Similarly, the CVaR is the conditional expected loss above q% VaR, i.e.,

CVaRq,t = −E

(
d∑
i=1

δitrit

∣∣∣∣∣
d∑
i=1

δitrit ≤ −VaRq,t

)
.

Here, we estimate the one-step-ahead V aRq,t and CV aRq,t for the portfolio of equal weight. In the

previous section, we obtain the distribution of one-step-ahead predicted return {(r(n)
1,t , . . . , r

(n)
d,t )}T+H

t=T+1.
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Then, it is easy to obtain the predictive VaRq,t and CVaRq,t using the return simulation. The esti-

mated VaRq and CVaRq are the average of {VaRq,t}T+H
t=T+1 and {CVaRq,t}T+H

t=T+1 along the prediction

period. We compare the prediction powers of the proposed copula models using backtesting for VaR.

The expected number of days that the realized portfolio return goes below the V aRq,t threshold is

qH.

4.3 Optimal portfolio allocation

Next, we can take advantage of the predicted returns above for active portfolio allocation. Classi-

cally, Markowitz (1952) introduces portfolio allocation theory based on the mean-variance approach.

The optimal weight for the minimum mean-variance problem is obtained by solving

δ̂t = arg min
δt

{
δ
′
tΣtδt : δ

′
t1 = 1, δ

′
tµt = µ0

}

where µt and Σt are the expected return and the covariance matrix of the assets in the portfo-

lio at time t, and µ0 is the expected return. Jagannathan and Ma (2003) recommend imposing

nonnegative constraints on portfolio weights (δt > 0). This strategy is not only commonly used

by practitioners but also improves the efficiency of optimal portfolios using sample moments. In

the empirical illustration, we show an example of an optimal portfolio using minimum variance, as

follows:

δ̂
(V ar)
t = arg min

δt

{
V

(
d∑
i=1

δitrit

)
: δ
′
t1 = 1, δ

′
t ≥ 0

}

Alternatively, the common optimization problem is to obtain the portfolio with minimum VaR

or CVaR. Alexander and Baptista (2004) compare the portfolio selection using VaR and CVaR and

recommend CVaR as a more appropriate tool for risk management. However, the minimum CVaR

portfolio is often time consuming in high dimensions and results in extreme asset weights. Xu et al.

(2016) deal with this issue by proposing a weight constraint on the minimum CVaR portfolio,

δ̂
(CV aR)
t = arg min

δt

{
CVaRq,t + λt

d∑
i=1

Pen(δit) : δ
′
t1 = 1

}

where λt is a penalty parameter and the Pen function can be chosen as the LASSO (Tibshirani

(1996)), or SCAD (Fan and Li (2001)) penalty functions, among others. Following Bassett Jr et al.
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(2004), the CVaR can be written as,

CVaRq,t = q−1 arg min
ξt

Eρq [rt − ξt]− µt

where ξt is the q quantile of rt. The quantile loss function ρq [u] = u(q − I(q < 0)) as defined in

Koenker and Bassett Jr (1978). Note that

rt =
d∑
i=1

δitrit = r1t −
d∑
i=2

δit(r1t − rit)

Let Yt = r1t and Xit = r1t − rit. Then, it is straightforward to write the optimal portfolio problem

with LASSO penalty as a Lasso penalized quantile regression,

δ̂
(CV aR)
t = arg min

δt,ξt

Eρq

[
Yt −

d∑
i=2

δitXit − ξt

]
− λt

d∑
i=1

|δit|

where the factor q is absorbed into the penalty term, and µt is the constant at time t. We choose a

λt for each period based on the minimum BIC value for the penalized quantile regression (see Lee

et al. (2014))

λ̂t = arg min
λt

log

(
N∑
n=1

ρτ (Y
(n)
t −

d∑
i=2

δitX
(n)
it − ξt)

)
+ |S| logN

2N

where N is the number of return simulation and |S| is the number of points in the set S such that

S = {i : δ̂it,λ 6= 0, i ∈ [2, p]}. We substitute the optimal weights in each period to obtain CV aRq,t

5 Simulation study

5.1 Simulated data

In this section, we illustrate the proposed Bayesian methodology using simulated data from the

MGSt one factor copula in Section 2.4. We generate a random sample of d = 100 time series with

G = 10 groups of different sizes and a time length T = 1000 from Equations (6) to (8). The value

of the parameters ϑc = (a, b, ν, γ, z, ζ, fc)
′ are randomized. More precisely, a is generated from a

U (0.05, 0.10) distribution, b is generated from a U (0.95, 0.985), ν is generated from a U (6, 18),
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γ is generated from a U (−1, 0) distribution, zt is generated from a Φ (0, 1) distribution, and ζgt

is generated from an IG(νg/2, νg/2) where t = 1, . . . , T, g = 1, . . . , G. The expected correlation

between pseudo observation xt and the latent factor zt are sampled from a U (0.1, 0.9) distribution,

which results in values for figc ranging in the interval (0.2, 3).

We estimate the set of true parameters, ϑc, using 20.000 MCMC iterations where the first 10.000

are discarded as burn-in iterations. The algorithm seems to perform adequately and convergence

is fast. Practically, all the posteriors reached convergence after 1000 iterations. We retain every

10-th iterations to reduce autocorrelation. The algorithm takes around 25 minutes, 70 minutes and

90 minutes for the Gaussian, Student and MGSt one factor copula model, respectively, on an Intel

Core i7-4770 processor (4 cores - 8 threads - 3.4GHz).

Figure 1 shows the box plots of the posterior sample from the MCMC together with the true

values of the model parameters. Observe that the true values of ag, bg, νg and γg lie between the

first and the third quantile of the credible intervals in 50% of the cases and never reach out of

their whiskers. The posterior distributions of bg are skewed to the left with heavier tails. Also,

the posterior samples show larger variances for higher values of the degree of freedom parameters

νg. We have observed that there is a negative correlation between MCMC samples of νg and γg

which means that if the posterior mean of νg underestimates its true value, the value of γg will

overestimate its true value. However, the effect is weakly observed. We select some values of fc

and zt to illustrate the comparison between the posterior mean of figc versus its true value, for

i = 1, . . . , d and g = 1 . . . , G, and zt versus its true value, for t = 1, . . . , T . We obtain quite accurate

results. The posterior variance of zt also reduces when the dimension increases. We obtain a smaller

posterior standard deviation of ρc when its true value is high. In general, most of the parameters

which govern the dynamic dependence in each group are correctly estimated. We perform a Monte

Carlo study in Online Appendix.

5.2 Comparison of estimators

Next, we compare several dynamic correlation models in different scenarios based on Engle (2002)

and Creal et al. (2011)’s proposal. We generate d = 10 time series from a multivariate Gaussian,
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Figure 1: Box plots for the posterior samples of (a, b, ν, γ, ρc, z) and true values (stars)
The figure shows the box plot for the posterior samples from simulated data. We select a few parameters
ρc and z based on their ranks of values to conserve space. We observe that the true values of (a, b, ν, γ)
never reach out of their whiskers. The online version of this figure is in color.

Student-t, GSt distribution with zero location vector and scale matrix Rt such that,

Multivariate Gaussian: yt = R
1/2
t εt

Multivariate Student-t : yt =
√
ζtR

1/2
t εt

Multivariate GSt: yt = γζt +
√
ζtR

1/2
t εt
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where εt ∼ Φd(0, Id), ζt ∼ IG(ν/2, ν/2), we let ν = 10 and γ = −0.1 and the time varying scale

matrix

Rt =


1 ... r1dt

... 1 ...

rd1t ... 1

 = ρtρ
′
t +DtD

′
t (10)

where Dt is a diagonal matrix with elements 1−ρ2
t . We consider six models to account for different

behaviors of ρt = (ρ1t, . . . , ρdt)
′ in high dimensions, for ∀i = 1, . . . , d :

1. Constant: ρit =
√

0.9.

2. Sine: ρit =
√

0.5 + 0.4cos(2πt/200 + ϕi/20).

3. Fast sine: ρit =
√

0.5 + 0.4cos(2πt/20 + ϕi/20).

4. Step: ρit =
√

0.4 + 0.5I(t > 500).

5. Ramp: ρit =
√
mod((t+ ϕi)/200).

6. Model: ρit =
√

exp(hit)
1+exp(hit)

where hit = −0.4(1− 0.99) + 0.99hi,t−1 + 0.14ηit and ηit ∼ Φ(0, 1).

Here, ϕ is used to control for the co-movement of the joint dependence of time series. When ϕ = 0,

we have equivalent-scale models in sine, fast sine, and ramp. Figure 2 shows the rijt process for

selected elements in the scale matrix Rt with ϕ = 10.

We generate 100 datasets for each multivariate distribution and estimate the scale matrix Rt

using the EWMA, the DCC (Engle (2002)) and the GAS models. For EWMA, we let

Σt = φΣt−1 + (1− φ)yt−1y
′
t−1 where φ = 0.96,

Rt = diag(Σt)
−1/2Σtdiag(Σt)

−1/2.

We generate 1100 time periods and measure the accuracy of each model based on the mean absolute

error (MAE) and the mean squared error (MSE) for the last T = 1000 observations,

MAE =
1

T

T∑
t=1

d∑
i=1

d∑
j=1

(|ρ̂ijt − ρijt|)

d2 − d
,

MSE =
1

T

T∑
t=1

d∑
i=1

d∑
j=1

(ρ̂ijt − ρijt)2

d2 − d
.
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Figure 2: The rij processes for different stress tests
The figure shows selected rij processes for different stress scenarios. The Rt is equivalent-scale matrix
in case of constant and step correlations. For sine, fast sine and ramp models, we set ϕ = 10 to account
for lag in the correlation. The online version of this figure is in color.
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Table 1 shows the comparison among the GAS and the EWMA to the benchmark DCC model.

The relative values of MAE and MSE are measured based on the mean of relative MAE and MSE

for each Monte Carlo dataset. For multivariate Gaussian simulation, the GAS model is preferred

over the DCC model with an increase of accuracy at least 10% with ϕ = 0. The GAS model

also outperforms the DCC model in most of the scenarios with multivariate Student-t and MGSt

distribution for ϕ = 10.

Table 1: MAE and MSE results: in-sample

Constant Sine Fast sine Step Ramp Model

MAE - Multivariate Gaussian

GAS 0.562 0.639 0.794 0.765 0.738 0.861
DCC 1.000 1.000 1.000 1.000 1.000 1.000
EWMA 5.153 1.048 1.068 1.068 0.921 1.199

MSE - Multivariate Gaussian

GAS 0.384 0.563 0.721 0.646 0.809 0.829
DCC 1.000 1.000 1.000 1.000 1.000 1.000
EWMA 31.367 1.173 1.210 1.080 1.090 1.484

MAE - Multivariate Student-t

GAS 0.506 0.792 0.883 0.871 0.805 0.947
DCC 1.000 1.000 1.000 1.000 1.000 1.000
EWMA 4.636 1.160 1.193 1.043 1.059 1.251

MSE - Multivariate Student-t

GAS 0.321 0.738 0.843 0.793 0.876 0.985
DCC 1.000 1.000 1.000 1.000 1.000 1.000
EWMA 27.077 1.395 1.495 1.109 1.271 1.633

MAE - MGSt

GAS 0.867 0.878 0.981 0.953 0.892 0.916
DCC 1.000 1.000 1.000 1.000 1.000 1.000
EWMA 5.135 1.107 1.194 1.137 1.045 1.181

MSE - MGSt

GAS 0.483 0.869 0.936 0.943 0.964 0.905
DCC 1.000 1.000 1.000 1.000 1.000 1.000
EWMA 31.248 1.322 1.495 1.323 1.252 1.371

The table shows the MAE and MSE for the estimated dynamic scale matrix

of EWMA, DCC, GAS models. The MAE and MSE are measured as relative

values with respect to DCC model. For sine, fast sine, ramp model, we set

ϕ = 0 for multivariate Gaussian distribution and ϕ = 10 for multivariate

Student-t and multivariate GSt distribution.
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6 Empirical data

In this section, we illustrate our approach with a series of d = 140 daily stock returns of companies

listed in the S&P 500 index, from 01/01/2007 to 01/09/2014. This period includes the subprime

mortgage crisis (2007-2009) and the European sovereign debt crisis (2010-2012). The data are

taken from Datastream (2018) and contain T = 2000 days observed during the considered eight-

year period. Table 2 shows the summary statistics for the daily stock returns. The mean daily

return over the 140 stocks is 0.056%. The most extreme individual events are a one day crash of

−53.8% and a one day gain of 87.0%. We calculate the robust skewness and robust kurtosis based

on the quantile distribution of returns due to outliers, see Kim and White (2004). The average

skewness is 0.05, which reflects a slight asymmetry of the observed returns, and the average excess

kurtosis is 0.312, which shows the heavy tails of the return distributions.

As described in Section 3, we use a two-stage procedure to estimate the dependence structure

of the stock returns. In Subsection 6.1, we fit a AR (1)−EGARCH (1, 1) model for the conditional

mean and variance of marginal returns. Then, we take out the standardized innovations and

transform them into the copula observations using the corresponding cdf. In Subsection 6.2, we

estimate the one factor copula models and illustrate some empirical findings.

Table 2: Summary statistics for cross-sectional daily returns of 140 firms listed in S&P 500

Statistics N Mean Minimum 1st Qu. Median 3rd Qu. Maximum

Mean 140 0.056 -0.028 0.038 0.053 0.071 0.168
Minimum 140 -16.559 -53.802 -19.929 -14.845 -11.470 -5.372

1. Quartile 140 -0.928 -1.801 -1.094 -0.890 -0.708 -0.417
Median 140 0.009 -0.000 0.000 0.000 0.011 0.066

3. Quartile 140 1.041 0.511 0.837 1.011 1.223 1.852
Maximum 140 19.435 7.795 13.015 17.941 22.854 86.983
Skewness 140 0.050 -0.045 0.035 0.054 0.071 0.131

Excess Kurtosis 140 0.312 0.124 0.256 0.303 0.359 0.661

Summary statistics for cross-sectional daily returns (in percentages) of 140 firms listed in S&P 500 index.

The distribution of the common statistics are shown by rows label using quantiles and mean. The outliers

can distort the sample statistics, hence we calculate the robust skewness (RS2) and robust kurtosis (RK2)

based on the quantile distribution of returns, see Kim and White (2004)
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6.1 Marginal distributions

For simplicity, we fit an AR (1)−EGARCH (1, 1) - skew Student-t model for each marginal return

series using rugarch package, see Ghalanos (2018). The standardized innovation, ηit, is assumed

to follow a univariate skew Student-t distributions (sStd), see Fernández and Steel (1998), with

degrees of freedom νiη and skewness parameter ξiη, for i = 1, . . . , d. Then,

rit = ci + φi1ri,t−1 + σitηit

log(σ2
it) = ωi + αi1ηi,t−1 + γi1(|ηi,t−1| − E|ηi,t−1|) + βi1log(σ2

i,t−1)

ηit ∼ skew − Student− t(νiη, ξiη)

uit = FsStd(ηit|νiη, ξiη)

Table 3 shows the summary statistics for the posterior mean estimations of the univariate

AR (1)−EGARCH (1, 1) - skew Student-t model across the 140 firms. The effect of the conditional

autoregressive mean is weak as the average value of φi1 is −0.035 and φi1 is insignificantly different

from 0 in most of marginals. This fact matches with other findings in the finance literature that

the return levels are unpredictable. However, the variance returns are quite predictable through

the EGARCH (1, 1) setting. The average of αi1, βi1, and γi1 are significantly different from 0

for most of the marginals. On average, the volatility clustering is captured by the parameter βi1

standing at 0.989. The degrees of freedom for each marginal also diversifies between 2.66 and 9.86

which accounts for different kurtosis. The skewness parameter ranges from 0.871 to 1.109 and

most of them are not significantly different from the one which represents for symmetric Student-t

distribution. However, the leverage effect that negative return usually leads to an increase in the

volatility of innovation is significantly observed for all marginal returns.

For the second stage, the standardized innovations are taken out and transformed to copula

observations by applying the corresponding marginal cdfs. More specifically, using the maximum

likelihood estimations for each marginal, we obtain the standardized innovations, ηit, of the AR (1)−

EGARCH (1, 1) process and transform them into the copula observations uit = FsStd

(
ηit|ϑ̂i

)
where ϑ̂i = {ĉi, φ̂i1, ω̂i, α̂i1, β̂i1, γ̂i1, ν̂iη, ξ̂iη}. This simplifies the computational burden in the high

dimensional setting in which we only concentrate on estimating the copula parameters. Apart from

that, we check if the choice of the sStd distribution is suitable with univariate GARCH volatilities
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Table 3: Summary statistics of AR (1)− EGARCH (1, 1)-skew Student-t for marginal returns

Mean Minimum 1. Quartile Median 3. Quartile Maximum

ci 0.054 -0.028 0.033 0.050 0.067 0.170
φi1 -0.035 -0.127 -0.056 -0.037 -0.012 0.053
ωi 0.011 -0.011 0.007 0.009 0.013 0.062
αi1 -0.066 -0.131 -0.081 -0.067 -0.052 -0.022
βi1 0.989 0.959 0.986 0.991 0.994 0.999
γi1 0.137 0.036 0.113 0.135 0.163 0.246
ξiη 0.998 0.871 0.972 0.995 1.022 1.109
νiη 5.407 2.660 4.479 5.159 5.926 9.858

Summary statistics for the maximum likelihood estimations of the univariate AR (1) −
EGARCH (1, 1)-skew Student model across the 140 firms. The distribution of estimations

are described by mean and quantiles.

by performing the Kolmogorov-Smirnov goodness of fit test as well as the Anderson-Darling test,

the Neyman’s smooth test of fit in Online Appendix. All series passed the test with p-values larger

than 0.05. We also tested for the serial correlation of the innovations and did not find significant

results.

6.2 Copula estimation

Next, we apply the proposed Bayesian approach to nine different one factor copula models. These

are the dynamic Gaussian, Student-t and MGSt combined with particular cases of models referred

as block equivalent mean correlation, single group and multiple-group. In the block equi-mean

correlation model, the parameter figc in (7) is restricted to be the same for the assets belonging

to the same group, i.e., f1gc = . . . = fnggc, for all g = 1, . . . , G. We classified G = 12 group

industries of assets depending on their SIC codes, as in Creal and Tsay (2015), Oh and Patton

(2017b), among others. These are Oil & Construction , Food & Beverage, Pharmaceuticals, Plastic

Material & Plant Chemical, Textile & Papers, Steel, Home Appliances & Automobile, Electronics,

Transportation & Communication, Retail & Distribution, Insurance, Finance (not contained in

Insurance). The detailed number of firms are reported in Online Appendix. On average, there are

12 firms in each sector group. In the single group model, G = 1 as described in (4), only a few

numbers of parameters account for the tail dependence, while the correlations are allowed to be

different across the assets. Finally, the multiple-group dynamic model is the most flexible one with

different behaviors in the tail dependence and unrestricted scale parameters as in (7). In all cases,
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we generate 40, 000 iterations with 10, 000 burn-in for each factor copula model and every 10-th

draws are taken in order to prevent the autocorrelation in the MCMC chains. We also check for

the convergence of the MCMC chains in Online Appendix.

Table 4 outlines the main estimation results for the nine one factor copula models. In particular,

the table includes the value of the AIC, BIC, and DIC for the model selection, obtained as explained

in Appendix E. The dynamic MGSt copula appears to show a better fit over the Gaussian and

Student-t copula models. In general, the posterior means of the parameters a, b and fc are similar

across Gaussian, Student-t, and MGSt copulas, as shown for example in the model (3), (6) and

(9). The block equi-mean correlation model reports a smaller posterior range for a and b. The

degrees of freedom and skewness parameters are roughly similar between the block-equivalent and

the multiple-group models. The model selection criteria show an interesting result that the models

with more parameters accounting for extreme events are preferable over the models that have

limitations on these behaviors. For example, in Gaussian copulas, the one group outperforms the

block-equivalent due to the fact that they do not capture the extreme occurrences. However, it is

preferable to use block equi-mean correlation in the Student-t and MGSt copulas rather than one

group copula. The block-equivalent models could even be comparable with the multi-group models

in all criteria AIC, BIC, and DIC. We also obtain that the group Student-t copula yields lower

degrees of freedom than the single group Student-t copula. This finding confirms with Creal and

Tsay (2015) due to the fact that when the number of assets in a group increases, the uncertainty

reduces because the central limit theorem holds.

Table 4: Estimation results for alternative copula models

Gaussian Gaussian Gaussian Student-t Student-t Student-t MGSt MGSt MGSt
block equi 1G multi.group block equi 1G multi.group block equi 1G multi.group

(1) (2) (3) (4) (5) (6) (7) (8) (9)

AIC -163400 -164422 -164658 -192501 -189064 -192197 -197143 -189184 -196901
BIC -163198 -163627 -163739 -192232 -188262 -191211 -196807 -188377 -195848
DIC -166377 -167382 -167622 -211507 -208358 -212414 -212257 -208539 -213090

# params 36 142 164 48 143 164 60 144 188
a [0.032,0.090] 0.070 [0.056,0.146] [0.023,0.067] 0.026 [0.025,0.067] [0.025,0.064] 0.026 [0.026,0.069]
b [0.968,0.997] 0.971 [0.855,0.984] [0.984,0.999] 0.992 [0.945,0.995] [0.981,0.999] 0.992 [0.956,0.995]
ν [6.814,11.907] 11.421 [6.816,11.870] [7.778,23.391] 11.378 [7.885,23.086]
γ [-1.230,-0.179] -0.106 [-1.215,-0.184]
fc [1.215,1.858] [0.957,2.360] [0.965,2.369] [1.278,1.997] [1.286,2.727] [1.030,2.442] [1.250,1.986] [1.288,2.716] [1.015,2.432]

Posterior estimations for nine one factor copula models and model selection criteria. Three different models are considered (the block-equivalent mean,
one group and multiple-group) for three different copula models (Gaussian, Student-t and MGSt). The table reports only the range of the posterior
means for the group models and the point estimates for the one group model.

In Tables 5 and 6, we report respectively details of the estimation for the dynamic group
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Student-t and dynamic group MGSt copulas. The posterior means of a and b show different

dynamic behaviors in each group sector. The values of fc are depicted as interval range of the

posterior means of figc, for assets i = 1, . . . , ng belonging to each group g = 1, . . . , G. The values

in parentheses are the average values of the posterior standard deviations. The posterior means

of ν are quite different among groups as well as between models. The standard deviations of ν

are small in the case of the group Student-t and seem to be higher in the MGSt model. The

lowest degree of freedom parameter in the dynamic group Student-t is in Oil industries standing

at 6.8. Despite that, it is strongly negative skewed in the MGSt copula model. The other groups

that have low degrees of freedom such as Paper, Insurance, and Finance reveal a slight skewness.

Although the posterior variance of the degrees of freedom in some industries are higher in the case

of group MGSt copula, it still supports for the hypothesis that the lower tail is heavier and the

distribution is highly asymmetric rather than there is symmetry in both upper tail and lower tail.

We show different tail dependence in each group sector by calculating the average of penultimate

tail dependence (Manner and Segers (2011)) of bivariate copulas of the assets belonging to the same

sector at quantile 0.5%. The strongest lower tail dependence is 0.280 from the Finance sector with

also strong upper tail dependence.

Figure 3 describes the posterior mean of the dynamic conditional Kendall-τ correlation among

group sectors using the Student and MGSt copula. This posterior mean Kendall-τ between sector g1

and g2 is calculated based on the average of the scale parameters over iterations and group members

as 1
ng1ng2

∑
ij ρitρjt where i, j belong to group g1 and g2 respectively, and i 6= j, g1 6= g2. And then,

we calculate the Kendall-τ correlation equivalent of the factor copula models using Monte Carlo

simulation. As we can see, a common pattern is that the correlation increased over time during

the subprime mortgage crisis (2008-2009) and the European sovereign debt crisis (peak in 2012).

Finance and Insurance sectors suffered most as the correlations go up during the crisis while in

other sectors such as Food and Retail, the correlation is less volatile.

Figure 4 shows the posterior distribution of the conditional variance and conditional Kendall-t

correlation of several companies including Citigroup, Goldman Sachs GP., McDonalds, Johnson &

Johnson, Apple, and Intel using MGSt copula. The first two columns illustrate the conditional

variance and the last column depicts the conditional Kendall-t correlation between the couple. As

mentioned above, the 2007−2009 and 2010−2012 period experienced a high volatility and a rise in
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Figure 3: The Kendall-τ correlation among group sectors

The figure shows the Kendall-τ correlation among sectors using group Student and MGSt factor copulas. The Kendall-τ

correlation for Student model is the blue dash line and Kendall-τ for MGSt model is the red solid line. We select some sectors

for illustrating and conserve space. The Kendall-τ correlation among sectors increased during crisis, reached a peak in 2009

and 2012. The online version of this figure is in color.
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Figure 4: Posterior Kendall-τ correlation among time series

The first two columns describe the conditional variance and the last column depicts the dynamic Kendall-τ correlation

together with the 95% credible interval using MGSt copula. First row: Citigroup, Goldman Sachs GP., second row:

McDonalds, Johnson & Johnson, third row: Apple, Intel. The online version of this figure is in color.
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Table 5: Results for the group Student-t copula with time-varying factor loadings.

Oil Food & Bev. Pharma. Plastics Paper Steel

a 0.067 0.043 0.059 0.052 0.067 0.034
(0.005) (0.007) (0.011) (0.014) (0.006) (0.004)

b 0.985 0.987 0.977 0.945 0.976 0.986
(0.002) (0.005) (0.009) (0.037) (0.004) (0.003)

ν 6.816 9.827 9.690 8.954 9.292 11.870
(0.215) (0.606) (0.644) (0.471) (0.377) (0.421)

fc [1.46,1.75] [1.17,2.07] [1.16,1.50] [1.20,2.12] [1.19,1.97] [1.23,2.22]
(0.098) (0.085) (0.076) (0.056) (0.076) (0.070)

# firms 13 7 7 7 12 17
λL = λU 0.177 0.115 0.098 0.160 0.148 0.151

Home App. Electronics Transportation Retail Insurance Finance

a 0.038 0.025 0.049 0.045 0.041 0.041
(0.006) (0.004) (0.010) (0.006) (0.004) (0.004)

b 0.985 0.995 0.975 0.985 0.988 0.992
(0.005) (0.002) (0.013) (0.004) (0.002) (0.002)

ν 9.457 11.001 9.706 10.659 8.001 7.032
(0.331) (0.657) (0.533) (0.530) (0.224) (0.186)

fc [1.33,2.32] [1.03,1.77] [1.37,2.03] [1.20,1.72] [1.03,2.44] [1.32,2.44]
(0.073) (0.105) (0.068) (0.082) (0.086) (0.103)

# firms 15 8 7 11 18 18
λL = λU 0.179 0.122 0.181 0.111 0.194 0.238

Posterior estimations for the interest parameters of the group Student-t factor copula. This includes the posterior
means and standard deviations for (a, b, ν) and the values of fc are depicted as interval range of the posterior means
together with the average posterior standard deviations. The tail dependence are calculated as the average of the
penultimate tail dependence (Manner and Segers (2011)) of bivariate Student-t copula with the mean correlation of
the assets belonging to the same sector at quantile 0.5% (see Appendix C).

correlation among all examples due to the financial crisis. The cross Kendall-τ correlation between

financial series are more volatile than other sectors. They were even highly dependent before crisis

happened in 2007.

6.3 Risk measures and portfolio allocation

Table 7 shows the average of VaR, CVaR and standard deviation of the predicted returns for the

equally weighted portfolio. We choose H = 400 ahead trading days. All the models perform quite

well in terms of risk measure except the one group Student and one group MGSt copulas. In all

other cases, the numbers of days that the realized return of the portfolio exceeds the threshold

VaR are close to their expected numbers. The block equi-mean correlation and the group MGSt

factor copulas also captures correctly quantile dependence at 1% level. The value of CVaR not only

depends on the VaR threshold but also depends on the copula types. For copulas that have no or

only one parameter to control for the tail dependence, the CVaR is often higher than those with

flexible tail dependence.

32



Table 6: Results for the group MGSt copula with time-varying factor loadings.

Oil Food & Bev. Pharma. Plastics Paper Steel

a 0.061 0.045 0.066 0.051 0.069 0.035
(0.006) (0.008) (0.014) (0.013) (0.006) (0.004)

b 0.984 0.984 0.970 0.956 0.977 0.986
(0.003) (0.006) (0.013) (0.023) (0.004) (0.003)

ν 23.086 13.967 17.039 10.022 9.875 12.354
(1.926) (1.671) (3.107) (0.648) (0.436) (0.460)

γ -1.215 -0.450 -0.682 -0.251 -0.236 -0.264
(0.078) (0.072) (0.124) (0.032) (0.023) (0.018)

fc [1.38,1.75] [1.16,2.01] [1.13,1.48] [1.18,2.09] [1.16,1.94] [1.20,2.18]
(0.090) (0.082) (0.071) (0.058) (0.078) (0.073)

# firms 13 7 7 7 12 17
λL 0.222 0.159 0.149 0.204 0.186 0.191
λU 0.071 0.065 0.044 0.113 0.103 0.117

Home App. Electronics Transportation Retail Insurance Finance

a 0.034 0.026 0.052 0.047 0.047 0.042
(0.005) (0.004) (0.009) (0.007) (0.005) (0.004)

b 0.989 0.995 0.976 0.985 0.985 0.992
(0.003) (0.002) (0.009) (0.005) (0.003) (0.002)

ν 10.230 12.028 9.997 13.994 8.750 7.885
(0.399) (0.819) (0.629) (1.051) (0.296) (0.297)

γ -0.257 -0.270 -0.246 -0.418 -0.212 -0.184
(0.020) (0.034) (0.029) (0.044) (0.017) (0.022)

fc [1.32,2.29] [1.01,1.75] [1.34,1.98] [1.21,1.71] [1.02,2.43] [1.31,2.42]
(0.082) (0.110) (0.070) (0.082) (0.081) (0.104)

# firms 15 8 7 11 18 18
λL 0.225 0.157 0.230 0.156 0.239 0.280
λU 0.130 0.086 0.139 0.068 0.147 0.184

Posterior estimations for the interest parameters of group MGSt factor copula. This includes the posterior means and
standard deviations for (a, b, ν, γ) and the values of fc are depicted as interval range of the posterior means together
with the average posterior standard deviations. The tail dependences are calculated as the average of the penultimate
tail dependence (Manner and Segers (2011)) of bivariate MGSt copula with the mean correlation of the assets belonging
to the same sector at quantile 0.5%. (see Appendix C).

Figure 5 shows the smoothed weight for the global optimal portfolio. The figure on the left is

obtained by finding the minimum variance portfolio for all assets. We only show the top five assets

that have an average weight larger than 5%. The figure on the right illustrates the weight of the

minimum CVaR portfolio at 5%. The collections of heavy weight assets chosen in both portfolios

are quite similar. The portfolio contains assets that are robust to high volatility such as those in the

group Retail, Paper, Pharmaceuticals. We see the similar pattern in both optimal portfolios with

holding less “Kellogg” and increasing “Johnson & Johnson”, despite that the weights are different.

On average, about 60 assets are included in the minimum CVaR in each period while the minimum

variance portfolio contains about 15 assets.
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Table 7: Risk measure for alternative copula models

Gaussian Gaussian Gaussian Student-t Student-t Student-t MGSt MGSt MGSt
block equi 1G multi.group block equi 1G multi.group block equi 1G multi.group

(1) (2) (3) (4) (5) (6) (7) (8) (9)

VaR 5% 1.664(22) 1.678(18) 1.665(22) 1.617(24) 1.857(16) 1.658(22) 1.59(23) 1.875(19) 1.618(22)
VaR 1% 2.556(4) 2.574(4) 2.556(4) 2.382(5) 3.014(2) 2.456(5) 2.336(5) 3.059(1) 2.379(5)

CVaR 5% 2.237 2.252 2.239 2.108 2.614 2.165 2.059 2.653 2.093
CVaR 1% 3.14 3.152 3.142 2.83 3.879 2.92 2.758 3.96 2.802

Std 1.066 1.074 1.067 1.028 1.212 1.049 1.03 1.21 1.045

Risk measure for nine one factor copula models. The number in the bracket is the number of days that realized return of the
portfolio exceeds the threshold VaR. For H = 400 trading days, the expected number of violations are 20 days, 4 days at 5%, 1%
level correspondingly.
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Figure 5: Portfolio allocation among time series based on min-variance and min-CVaR

The figure on the left shows the smooth weight for “Johnson & Johnson”, “Altria Group”, “Southern”, “Kellogg”,

and “Consolidated Edison” in the global minimum variance portfolio. The figure on the right shows the smooth

weights on global minimum CVaR portfolio. In the optimal variance and CVaR, there are similar assets that follow

a similar trend, the weights are quite different.
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7 Conclusion

In this paper, we have proposed a family of one factor copula models and developed a Bayesian

algorithm to make parallel inference on the model parameters. In our proposed models, the time

series become independent conditioning on the latent factor which allows us to introduce an esti-

mation strategy in a parallel setting. Furthermore, the factor loadings have been modeled as GAS

processes which imposes a dynamic dependence structure in their densities. Using multiple-group

MGSt copulas, we obtain different types of tail and asymmetric dependence. The models are ex-

tendible since the number of parameters scales linearly with the dimension. As an extension, more

complex copula functions can be build based on the distribution of ζg. However, this also may re-

quire the computational cost to obtain the inverse cdf. Also, we might consider factor models using

the family of Archimedean copulas that only allow for lower tail dependence, due to the empirical

finding that half of the groups only show weak evidence of upper tail dependence. Finally, one

factor models may not be enough for the high dimensional dependence as Oh and Patton (2017a)

and Nguyen et al. (2018) suggest. One future direction could be to extend the proposed approach

to dynamic multi factor models.
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Appendix

A Score update for the factor copula model

A.1 Dynamic Gaussian one factor copula

The conditional cdf of ut = (u1t, . . . , udt)
′, where uit = Φ (xit) , is given by:

F (u1t, . . . , udt | zt, ft,Ft, θ) = Pr (U1t ≤ u1t, . . . , Udt ≤ udt | zt, ft,Ft, θ)
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= Pr
(
X1t ≤ Φ−1 (u1t) , . . . , Xdt ≤ Φ−1 (udt) | zt, ft,Ft, θ

)
=

d∏
i=1

Pr
(
Xit ≤ Φ−1 (uit) | zt, ft,Ft, θ

)
.

Now, note that, given {zt, ft,Ft, θ}, the correlation ρit is known and Xit follows a Gaussian dis-

tribution with mean ρitzt and standard deviation
√

1− ρ2
it. Then, the conditional density of ut

is,

p (ut | zt, ft,Ft, θ) =
∂dF (u1t, . . . , udt | zt, ft,Ft, θ)

∂u1t . . . ∂udt
=

d∏
i=1

φ
(

Φ−1 (uit) | ρitzt,
√

1− ρ2
it

)
φ (Φ−1 (uit) | 0, 1)

,

where φ (· | µ, σ) denotes a normal pdf with mean, µ, and standard deviation, σ. Then, the proposed

dynamic process is based on the derivative of the log conditional density wrt the dynamic fit, i.e.:

sit =
∂ log p (ut | zt, ft,Ft, θ)

∂fit
=
∂ log p (ut | zt, ft,Ft, θ)

∂ρit

∂ρit
∂fit

=

∂
d∑
i=1

(
log φ

(
Φ−1 (uit) | ρitzt,

√
1− ρ2

it

)
− log φ

(
Φ−1 (uit) | 0, 1

))
∂ρit

1− ρ2
it

2

=
∂
(
−1

2 log(2π)− 1
2 log(1− ρ2

it)− 1
2

(Φ−1(uit)−ρitzt)2
1−ρ2it

)
∂ρit

1− ρ2
it

2

=

(
ρit

(1− ρ2
it)

+
zt(Φ

−1 (uit)− ρitzt)
1− ρ2

it

− ρit(Φ
−1 (uit)− ρitzt)2

(1− ρ2
it)

2

)
1− ρ2

it

2

=
1

2
Φ−1 (uit) zt +

1

2
ρit − ρit

Φ−1 (uit)
2 + z2

t − 2ρitΦ
−1 (uit) zt

2(1− ρ2
it)

,

which leads to the expression given in (3).

A.2 Dynamic generalized hyperbolic skew Student-t one factor copula

The conditional cdf of ut = (u1t, . . . , udt), where uit = FGSt (xit | ν, γ) , is:

F (u1t, . . . , udt | zt, ζt, ft,Ft, θ) = Pr
(
X1t ≤ F−1

GSt (u1t | ν, γ) , . . . , Xdt ≤ F−1
GSt (udt | ν, γ) | zt, ζt, ft,Ft, θ

)
=

d∏
i=1

Pr

(
X̃it ≤

F−1
GSt (uit | ν, γ)− γζt√

ζt
| zt, ζt, ft,Ft, θ

)
,
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where X̃it = (Xit − γζt) /
√
ζt. Similarly, given {zt, ζt, ft,Ft, θ}, the correlation ρit is known and

X̃it follows a Gaussian distribution with mean ρitzt and standard deviation
√

1− ρ2
it. Then, the

conditional density of ut is,

p (ut | zt, ζt, ft,Ft, θ) =
∂dF (u1t, . . . , udt | zt, ζt, ft,Ft, θ)

∂u1t . . . ∂udt
=

d∏
i=1

φ
(
F−1
GSt(uit|ν)−γζt√

ζt
| ρitzt,

√
1− ρ2

it

)
fGSt

(
F−1
GSt (uit | ν, γ) | ν, γ

)√
ζt

,

(11)

where fGSt (· | ν, γ) denotes the standard generalized hyperbolic skew Student-t with ν degrees of

freedom and γ skewness parameter. Thus, the equation for sit remains,

sit =
∂ log p (ut | zt, ζt, ft,Ft, θ)

∂fit
=
∂ log φ

(
F−1
GSt(uit|ν)−γζt√

ζt
| ρitzt,

√
1− ρ2

it

)
∂ρit

1− ρ2
it

2

=
1

2

F−1
GSt (uit | ν)− γζt√

ζt
zt +

1

2
ρit − ρit

(
F−1
GSt(uit|ν)−γζt√

ζt

)2

+ z2
t − 2ρit

F−1
GSt(uit|ν)−γζt√

ζt
zt

2(1− ρ2
it)

,

which leads to the expression given in (5).

B Equivalence of predictive density

Here, we show that our GAS update equation is similar to Lucas et al. (2018) where the value of

score sit is the likelihood conditional on the unobservable mixing variable. For that,

sOPit =
∂

∂ft
log p (ut|ft,Ft, θ) =

∂

∂ft
log

∫
p(ut, zt|ft,Ft, θ)dzt

=

[∫
p(ut, zt|ft,Ft, θ)dz

]−1 ∫ ∂

∂ft
p(ut, zt|ft,Ft, θ)dzt

=

[∫
p(ut, zt|ft,Ft, θ)dz

]−1 ∫ ∂

∂ft
p(ut|zt, ft,Ft, θ)p(zt)dzt

=

[∫
p(ut, zt|ft,Ft, θ)dz

]−1 ∫ 1

p(ut|zt, ft,Ft, θ)
∂p(ut|zt, ft,Ft, θ)

∂ft
p(ut|zt, ft,Ft, θ)p(zt)dzt

=

∫
∂logp(ut|zt, ft,Ft, θ)

∂ft

p(ut|zt, ft,Ft, θ)p(zt)∫
p(ut, zt|ft,Ft, θ)dz

dzt

=

∫
∂logp(ut|zt, ft,Ft, θ)

∂ft
p(zt|ut, ft,Ft, θ)dzt

= Ezt

[
∂logp(ut|zt, ft,Ft, θ)

∂ft

∣∣∣∣ ut, ft,Ft, θ] .
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Here, the value of standard score sOPit is the expectation of our proposal score sit over zt, where zt

has the pdf p(zt|ut, ft,Ft, θ) distribution.

C Tail dependence for the generalized hyperbolic skew Student-t

copula

Consider the bivariate GSt copula. We derive the penultimate tail dependence of a pair of pseudo

observables xigt and xjgt in a same group, g, at time t as:

CGSt(u, u|Rt, νg, γg) = FMGSt(F
−1
GSt(u), F−1

GSt(u)|Rt, νg, γg)

=

∫ F−1
GSt(u)

−∞

∫ F−1
GSt(u)

−∞
fMGSt(x1, x2|Rt, νg, γg)dx1dx2

(12)

where

fMGSt(x1, x2|Rt, νg, γg) = c
K ν+2

2

(√
(ν +Q(x))Q(γ)

)
exp(x

′
R−1
t γ)√

(ν +Q(x))Q(γ)
− ν+2

2

(
1 + Q(x)

ν

) ν+2
2

,

c =
21− ν+2

2

Γ(ν2 )πν|Rt|0.5
,

Q(x) = x
′
R−1
t x

′
,

Q(γ) = γ
′
R−1
t γ

′
,

(13)

and Kλ(.) is the modified Bessel function of the third kind with index λ. We obtain C(u, u|Rt, νg, γg)

as the numerical integral. Then, we take the average of C(u, u|Rt, νg, γg) over T observations for

the mean correlation of all assets in the same group. The tail penultimate dependence are,

λL =

T∑
t=1

1

T

CGSt(u, u|Rt, νg, γg)
u

, and,

λU =

T∑
t=1

1

T

1− 2u+ CGSt(1− u, 1− u|Rt, νg, γg)
u

Table (6) reports the penultimate tail dependence of bivariate MGSt copula at u = 0.005.
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D Posterior inference

From the joint posterior of the dynamic MGSt factor copula model in (9), we derive the conditional

posterior for each parameters as follows:

p(zt|u, a, b, fc, z1:(t−1), ν, γ, ζ) ∝
G∏
g=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)φ(zt | 0, 1)

p(figc|u, a, b, z, ν, γ, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

p(ag|u, b, f, z, ν, γ, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

p(bg|u, a, f, z, ν, γ, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

p(νg|u, f, a, b, z, γ, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

fGSt(xigt|νg, γg)

×
T∏
t=1

IG
(
ζgt|

νg
2
,
νg
2

)
G(νg − 4 | 2, 2.5)

p(γg|u, f, a, b, z, ν, ζ) ∝
T∏
t=1

ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)

fGSt(xigt|νg, γg)
φ(γg | 0, 1)

p(ζgt|u, f, a, b, z, ν, γ, ζg,1:(t−1)) ∝
ng∏
i=1

φ(x̃igt | ρigtzt,
√

1− ρ2
igt)√

ζgt
IG
(
ζgt |

νg
2
,
νg
2

)

As the conditional posterior of zt depends on the pseudo observations at time t and the GAS

process ρigt, it is fast to sequentially sample from the Gaussian conjugate distribution. Also, the

conditional posteriors of ag, bg, νg, γg and ζgt only depend on the pseudo observations in group

g. Then, we can make parallel inference for g = 1, . . . , G. Finally, conditional on zt, each time

series is independent, for i = 1, . . . , ng and g = 1, . . . , G. Then, we also create a parallel estimation

procedure for figc.

E Model selection

The statistics of model selection are calculated based on the average of the log-likelihood. We take

the average of the log likelihood after MCMC iterations at the posterior mean of the parameters
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of interest, θint = {a, b, fc, ν, γ}, as the integral over the nuisance parameter space, θnui = {z, ζ}.

Then, the AIC, BIC and DIC are given,

AIC = −2Eθnui
[
log
(
p
(
u|θ̄int, f,F

))]
+ 2k

BIC = −2Eθnui
[
log
(
p
(
u|θ̄int, f,F

))]
+ k log T

DIC = −4Eθ [log p (u|θ, f,F) |u] + 2Eθnui
[
log
(
p
(
u|θ̄int, f,F

))]
where k is the number of parameters of interest.
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