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Abstract

In this paper, we extend the standard Gaussian stochastic-volatility Bayesian VAR by em-

ploying the generalized hyperbolic skew Student’s t distribution for the innovations. Allowing

the skewness parameter to vary over time, our specification permits flexible modelling of in-

novations in terms of both fat tails and – potentially dynamic – asymmetry. In an empirical

application using US data on industrial production, consumer prices and economic policy un-

certainty, we find support – although to a moderate extent – for time-varying skewness. In

addition, we find that shocks to economic policy uncertainty have a negative effect on both

industrial production growth and CPI inflation.
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Keywords: Bayesian VAR; Generalized hyperbolic skew Students’s t distribution; Stochas-

tic volatility; Economic policy uncertainty
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1 Introduction

Many macroeconomic time series seem to be associated with properties that are inconsistent with

a linear model which has error terms that are Gaussian distributed (and homoscedastic). One

such property is that large shocks appear to hit the economy more frequently than what would be

expected if the shocks were drawn from a Gaussian distribution. For example, it can be argued

that the occurrence of the Global Financial Crisis, the crisis related to the Covid-19 pandemic and

the inflation surge of 2022-2023 in a fairly short period of time warrants models with distributions

for the error terms that have fat tails. A second property is that the unconditional distribution of

the variable can be characterised by skewness. This feature might be driven by disturbances whose

distributions have skewness; this could potentially be time-varying, for instance, being different in

expansions and contractions. Empirical work documenting and addressing fat tails and skewness

include, for example, Acemoglu and Scott (1997), Ni and Sun (2005), Fagiolo et al. (2008), Ascari

et al. (2015), Cross and Poon (2016), Liu (2019), Carriero et al. (2020), and Delle Monache et al.

(2024).

In this paper, we address these two issues and further the literature by specifying a Bayesian

VAR model with stochastic volatility where the disturbances are drawn from a generalized hyper-

bolic skew Student’s t distribution with time-varying skewness. This specification permits flexible

modelling of innovations in terms of fat tails and – potentially dynamic – asymmetry. Our model

nests specifications with Gaussian and fat-tailed innovations, as well as the specification where

asymmetry is constant over time; the last specification was first defined in Karlsson et al. (2023).

In setting up the model, we also describe the appropriate priors and the general Markov Chain

Monte Carlo procedure used to draw inference.

We illustrate the framework with an application to US data in which we model industrial

production, consumer prices and the economic policy uncertainty (EPU) index of Baker et al.

(2016). The relation of the EPU index to the macroeconomy has been analysed widely over the

last decade and studies tend to show that an increasing EPU index has a dampening effect on

the real economy; this includes holding back both investment (e.g. Gulen and Ion, 2016) and

consumption (e.g. Nam et al., 2021), an increasing unemployment rate (e.g. Caggiano et al., 2017)
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and a predictive ability for recessions (e.g. Karnizova and Li, 2014 and Balcilar et al., 2016).

The main contribution of this paper is methodological. The most closely related research in the

previous literature includes Karlsson et al. (2023) who introduced a general class of VAR model

with generalized hyperbolic skew Student’s t innovations and stochastic volatility. Delle Monache

et al. (2024) provided evidence of time-varying conditional asymmetry of US GDP using a time-

varying location, scale, and asymmetry model. Using the same modelling framework, De Polis et al.

(2024) documented largely downside risk in inflation between the mid-1990s and the early 2020s.

Iseringhausen (2024) studied the growth-at-risk of advanced economies using a univariate time-

varying volatility and skewness model. We contribute to the literature by extending the Karlsson

et al. (2023) model allowing the skewness parameters of the generalized hyperbolic skew Student’s t

innovations to be time-varying. Unlike the observation-driven model of Delle Monache et al. (2024)

and De Polis et al. (2024), our proposed model is parameter-driven where the time-varying skewness

evolves over time as a stochastic process. Furthermore, we study dynamic skewness of a multivariate

distribution, where the skewness parameters follow independent random-walk processes. Therefore,

our framework can be seen as an extension of Tsiotas (2012) and Iseringhausen (2020). It also differs

from Iseringhausen (2024) who has observable variables in the skewness equation. Our model

allows us to account for the interaction between the variables included, as well as innovations that

potentially feature dynamic skewness.

In addition to the methodological contribution, we also make a contribution to the empirical

literature studying the relationship between the EPU index and the macroeconomy. Our results

suggest that there is time-variation in the asymmetry of all three variables, with the evidence

being strongest for the EPU index. Furthermore, we confirm the finding of Leduc and Liu (2016)

that uncertainty shocks resemble aggregate demand shocks, where an increase in uncertainty is

associated with decreasing real activity and lower inflation.

The rest of this paper is organised as follows. We present the methodological framework –

including how inference is conducted – in Section 2. The empirical illustration of the framework is

provided in Section 3. Finally, Section 4 concludes.
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2 Econometric Framework

In this section, we first present a VAR model with a Gaussian distribution and stochastic volatility

in the innovations.1 We then generalize the framework so that we allow for fat tails, dynamic asym-

metry and stochastic volatility; this is done by employing a general class of generalized hyperbolic

skew Student’s t distribution for the innovations. This class of VAR model is an extension of the

models developed by Karlsson et al. (2023) and allows us to capture the time-varying effects of

disturbances to the conditional mean and the conditional variance of the variables.

2.1 A VAR Model with Gaussian Innovations and Stochastic Volatility

We assume that a VAR model with Gaussian innovations and stochastic volatility (Gaussian.SV)

is given by

yt = c+B1yt−1 + . . .+Bpyt−p +A−1H
1/2
t ϵt, t = 1, . . . , T, (1)

where yt is a k-dimensional vector of time series of interest; c is a k-dimensional vector of constants;

Bj is a k × k matrix of regression coefficients with j = 1, . . . , p; A is a k × k lower triangular

matrix with ones on the diagonal that describes the contemporaneous interaction of the endogenous

variables; Ht = diag(h1t, . . . , hkt) is a k × k diagonal matrix that captures the heteroskedasticity;

and ϵt is a k-dimensional vector that follows a multivariate Gaussian distribution with zero mean

vector and identity covariance matrix, that is, ϵt ∼ Nk(0, I). We also assume that ϵt is independent

of Ht. Moreover, we assume that the elements of Ht = diag(h1t, . . . , hkt) follow a random walk

process such that

log hit = log hit−1 + σh,iηit, i = 1, . . . , k, (2)

where ηit ∼ N (0, 1). Let us note that the VAR model with homoskedastic Gaussian innovations

can be obtained by restricting the volatility to be constant, i.e. σ2
h = (σ2h,1, . . . , σ

2
h,k)

′ = 0 and

log hit = log hi0 for all i = 1, . . . , k and t = 1, . . . , T .

1We take stochastic volatility as a given feature of the model. There is ample evidence in the literature that many
macroeconomic time series benefit from this modelling choice; see, for example, Cogley and Sargent (2005), Sims
and Zha (2006), Clark (2011), Carriero et al. (2015), Chan (2017), Akram and Mumtaz (2019), Koop and Korobilis
(2019), Karlsson and Österholm (2020a,b, 2023) and Kiss et al. (2023). This modelling choice is also supported in
our empirical analysis. As can be seen in Figure 2, estimated volatilities vary substantially over time.
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For the sake of notational simplicity, the Gaussian.SV model in (1) can be rewritten as follows

yt = Bxt + ut, (3)

where B = (c,B1, . . . ,Bp) is a k×(1+kp) matrix, xt = (1,y
′
t−1, . . . ,y

′
t−p)

′
is a (1+kp)-dimensional

vector, and ut = A−1H
1/2
t ϵt is a k-dimensional vector of heteroskedastic innovations associated with

the VAR equations. In the next subsection, we extend the innovation term ut to a class of gener-

alized hyperbolic skew Student’s t distribution with stochastic volatility and dynamic asymmetry.

2.2 A VAR Model with Fat Tails, Dynamic Asymmetry and Stochastic Volatil-

ity in the Innovations

We now propose a class of generalized hyperbolic skew Student’s t VAR models by assuming that

the vector of innovations ut in (1) follows a Gaussian variance-mean mixture and is expressed as

ut = (wt − w)γt +
√
wtA

−1H
1/2
t ϵt, (4)

where the mixing variable wt follows an inverse gamma distribution with the same shape and rate

parameters equal to ν/2, that is, wt ∼ IG(ν/2, ν/2); w = E[wt] = ν/(ν − 2) is used for centring

the innovations vector so that its mean is equal to zero; γt = (γ1t, . . . , γkt)
′
is the k-dimensional

vector of the time-varying skewness parameters which are assumed to follow independent random

walk processes such that

γit = γit−1 + σγ,iηit, i = 1, . . . , k, (5)

where ηit ∼ N (0, 1). The matrices A and Ht, as well as the vector ϵt in (4), are the same as in (1).

Moreover, wt, γt, Ht and ϵt are mutually independent. In what follows, the VAR model with the

innovation term defined as in (4) is called dynSkew-T.SV.

In general, the dynSkew-T.SV VAR model imposes the fat tails and time-varying asymmetry of

the innovations directly in each VAR equation. Even though there is only one parameter to control

for the fat tails of all variables, it is still sufficiently flexible to capture the joint dependence of the
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innovations. Regarding the properties of the model, it can be noted that the following holds:

ut|wt,γt,Ht ∼ Nk

(
µt = (wt − w)γt, Σt = wtA

−1HtA
−1′

)
. (6)

It follows that the conditional distribution of ut (given γt and Ht) follows a multivariate generalized

hyperbolic skew Student’s t distribution (see McNeil et al., 2015). Setting σ2
γ = (σ2γ,1, . . . , σ

2
γ,k)

′ = 0

and γit = γi0 for all i = 1, . . . , k and t = 1, . . . , T , the dynSkew-T.SV VAR model reduces to

the VAR model with generalized hyperbolic skew Student’s t innovations and stochastic volatility

(Skew-T.SV). Additionally, assuming γit = γi0 = 0, we arrive to the VAR model with generalized

hyperbolic Student’s t innovations and stochastic volatility (T.SV). Moreover, considering ν → ∞,

we obtain the VAR model with Gaussian innovations and stochastic volatility (G.SV).

From an economic point of view, the mixing variable wt is identified from the sudden changes of

the conditional volatility of variables while the stochastic volatility term exp(hit/2) captures smooth

changes in the volatility (Chiu et al., 2017). The data will determine whether movements that are

large in magnitude come from the mixing variable or a stochastic volatility shift. Is is also worth

pointing out that the mixing variable itself is able to generate asymmetry in the unconditional

distribution of the variables, even though innovations are drawn from a symmetric distribution.

This is due to the fact that the mixing variable shifts the conditional mean of each variable. Since

the uncertainty rises during recessions, these effects are different during recessions and expansions,

generating asymmetry in the unconditional distribution of the variables (as described in Carriero

et al., 2018). Our specification incorporates this feature but also directly allows for skewness in the

conditional distribution of the innovations; hence, even the conditional distribution of the variables

is allowed to be asymmetric.

2.3 Bayesian Inference

This section discusses the prior distributions for the parameters in the dynSkew-T.SV models and

the general MCMC inference scheme.
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2.3.1 Prior Distribution

We denote θ = {vec(B)
′
,a

′
,γ

′
0, ν,h

′
0,σ

2′
h ,σ

2′
γ ,γ

′
1:T ,w

′
1:T ,h

′
1:T }

′
as the set of the dynSkew-T.SV

model parameters. We set a as a vector of the lower triangular elements of the matrix A such that

a = (a2,1, a3,1, a3,2, . . . , ak,k−1)
′
. Also let h0 and γ0 be the vectors of initial values of the stochastic

volatility and the dynamic skewness, respectively. Following the prior assumption in Koop and

Korobilis (2010) and Karlsson et al. (2023), we assume that the regression coefficients vec(B) follow

a Minnesota-type prior,that is vec(B) ∼ Nk(1+kp)(b0,Vb0) such that the overall shrinkage is l1 = 0.2

and the cross-variable shrinkage is l2 = 0.5. For other parameters, we consider vague but proper

prior distributions. For example, the prior of a is also Gaussian, aij ∼ N (0, 10I0.5k(k−1)), which

implies a weak assumption of no interaction among endogenous variables. The prior for the degrees

of freedom parameter is ν ∼ G(2, 0.1) such that the prior mean of the degrees of freedom is 20. The

initial skewness has zero prior mean and unit variance, while the initial log volatility is obtained

from the OLS estimation of the AR(p) model for each time series. In the case of the VAR model

without stochastic volatility, we consider log hi0 ∼ N
(
log Σ̂i,OLS , 4

)
, where Σ̂i,OLS are variance

estimators of AR(p) models using the ordinary least square method; see Clark and Ravazzolo

(2015). The prior for the variance of a shock to the volatility and the time-varying skewness are

σ2γ,i ∼ G(12 ,
1

2Vσ
) which is equivalent to ±

√
σ2γ,i ∼ N (0, Vσ); see Kastner and Frühwirth-Schnatter

(2014). We choose Vσ = 1, noting that this prior is less influential compared to the conjugated

inverse gamma prior especially in the case of a small true value. Finally, the prior for the mixing

variable wt is based on the model assumption wt|ν ∼ IG(ν/2, ν/2).

2.3.2 Estimation Procedure

The Bayesian inference using a Gibbs sampler is extended to make inference on model parameters.

To simplify the notation, let Ψ be a set of conditioning parameters except the one that we sample

from.
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1. To sample π(b|Ψ) where b = vec(B), we consider Equation (3) as

yt − (wt − w)γt = Bxt + w
1/2
t A−1H

1/2
t ϵt,

w
−1/2
t A (yt − (wt − w)γt) = w

−1/2
t ABxt +H

1/2
t ϵt

= w
−1/2
t x

′
t ⊗A vec(B) +H

1/2
t ϵt,

ỹt = X̃tb+H
1/2
t ϵt,

where ỹt = w
−1/2
t A (yt − (wt − w)γt) and X̃t = w

−1/2
t x

′
t ⊗A. Hence, the conditional poste-

rior of b is a conjugate normal distribution that

π(b|Ψ) ∼ N (b∗,V∗
b),

where

V∗−1
b =V−1

b0
+

T∑
t=1

X̃
′
tH

−1
t X̃t,

b∗ =V∗
b

[
V−1

b0
b0 +

T∑
t=1

X̃
′
tH

−1
t ỹt

]
.

2. To sample π(γ0:T |Ψ), we consider the time-varying coefficient γt on the representation of the

dynSkew-T.SV model,

yt −Bxt = (wt − w)γt + w
1/2
t A−1H

1/2
t ϵt,

γt = γt−1 + diag(σγ)ςt.

We apply the forward filter backward smoothing algorithm as in Carter and Kohn (1994) to

filter out the last state variable of the time-varying skewness. Then, γt is sampled from its

smoothing Gaussian distribution for t = T, . . . , 0; see Primiceri (2005). As σ2γ has a non-

conjugate prior distribution, we sample π(σ2
γ |Ψ) using an independent Metropolis-Hastings

step; see Kastner and Frühwirth-Schnatter (2014).

3. To sample π(a|Ψ), we follow Cogley and Sargent (2005) and rewrite Equation (3) as a system
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of linear equations with equation,

Aũt = H
1/2
t ϵt,

where ũt = w
−1/2
t (yt −Bxt − (wt − w)γt). Then, the conditional posterior of elements in a

can be drawn equation by equation using the conditionally Gaussian posterior distribution;

see Cogley and Sargent (2005).

4. To sample π(H1:T |Ψ), we follow Kim et al. (1998), Primiceri (2005) and Del Negro and

Primiceri (2015). Let ˜̃ut = Aũt, for each series i = 1, . . . , k, we have that log ˜̃u2it = log hit +

log ϵ2t . We follow Kim et al. (1998) who approximate the distribution of log(ϵ2t ) using a mixture

of 7 normal components. Then, we sample log ht from its smoothing Gaussian distribution

using the forward filter backward smoothing algorithm in Carter and Kohn (1994). Finally,

we sample π(σ2
h|Ψ) from an independent Metropolis-Hastings; see Kastner and Frühwirth-

Schnatter (2014).

5. To sample π(νi|Ψ) ∝ G(νi; 2, 0.1)
T∏
t=1

IG
(
wt;

νi
2
,
νi
2

)
for i = 1, . . . , k, we use an adaptive

random walk Metropolis-Hastings algorithm to accept/reject the draw ν
(∗)
i = νi + ηi exp(ci),

where ηi ∼ N (0, 1) and the adaptive variance ci is adjusted automatically such that the

acceptance rate is around 0.25 (Roberts and Rosenthal, 2009).

6. To sample π(wt|Ψ) for t = 1, . . . , T , we write

ut = yt −Bxt + wγt = wtγt + w
1/2
t A−1H

1/2
t ϵt.

The full conditional posterior is thus generalized inverse Gaussian following Hörmann and

Leydold (2014), GIG(λ, ψ, χ) with λ = −(ν + k)/2, χ = q2t + ν and ψ = p2t for q2t =
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u′
tA

′H−1
t Aut and p

2
t = γ ′

tA
′H−1

t Aγt according to

π(wt|Ψ) ∝ w
−k/2
t exp

(
−1

2
(yt −Bxt − (wt − w)γt)

′
Σ−1

t (yt −Bxt − (wt − w)γt)

)
IG

(
wt;

νi
2
,
νi
2

)
∝ w

−k/2
t exp

(
−1

2
(ut − wtγt)

′
(w−1

t A′H−1
t A)(ut − wtγt)

)
IG

(
wt;

νi
2
,
νi
2

)
∝ w

−(k/2+ν/2+1)
t exp

(
−1

2

u′
tA

′H−1
t Aut + ν

wt
− 1

2
wtγ

′
tA

′H−1
t Aγt

)
.

3 Empirical Illustration

We next estimate models using monthly US data on industrial production, consumer prices and the

the economic policy uncertainty (EPU) index of Baker et al. (2016). Analysis is conducted both

within- and out-of-sample.

The data – which range from 1985M1 to 2024M3 – were sourced from the FRED-MD database

of Federal Reserve Bank of St. Louis.2 We calculate the year-on-year growth rate of industrial

production and year-on-year inflation using the twelve-month log-difference of the industrial pro-

duction index and the consumer price index. Denoting industrial production at time t by IPt, the

former is defined as it = 100[log(IPt) − log(IPt−12)]; denoting the consumer price index at time

t by CPIt, the latter is given as pt = 100[log(CPIt) − log(CPIt−12)]. For the numerical stability

of the estimation procedure, we divide the EPU by 10; we accordingly define et = EPUt/10. The

data series are shown in the Figure 1.

From a methodological point of view, our primary interest is in the skewness estimates. But it is

also relevant to see how our empirical findings relate to earlier research that has studied the relation

of the EPU index to the macroeconomy. As was pointed out in the introduction, an increasing

EPU index tends to be associated with a slowing real economy, where a weaker development of

investment and consumption is in line with the more general notion that uncertainty should hold

back the real economy; see, for example, Bernanke (1983) and Bloom (2009). Previous findings

regarding the real economy are also in line with the claim of Leduc and Liu (2016) who argue that

uncertainty shocks resemble aggregate demand shocks. However, Jones and Olson (2013) find that

the relation between the EPU index and inflation appears ambiguous. Adding more data and new

2See McCracken and Ng (2016) for details.
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methodology to study this issue is hence relevant.
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Figure 1: Data.

Industrial production growth rate (it) and CPI inflation (pt) are given as 100 times the twelve-month log-difference. The plotted

EPU (et) is the original series divided by 10. The shaded areas highlight the recession periods based on the NBER indicators.
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3.1 Within-Sample Analysis

Our within-sample analysis focuses on the properties of a trivariate VAR(3) model3 with dynamic

skewness, where the vector of dependent variables is defined as yt = (it, pt, et)
′.4

Initially, we note the importance of stochastic volatility for all variables; see Figure 2. Generally,

volatility varies substantially over time and, in particular, it rises around crisis times. This finding

gives support to our choice to take stochastic volatility as a given feature. Interestingly, the

estimated stochastic volatility is barely affected by allowing for non-Gaussian innovations; the

estimates are slightly higher for the Gaussian model, but differences are often within the credible

intervals (larger deviations are only present for some periods for the EPU index). This suggests

that the dispersion of the innovation distribution is mostly captured well by stochastic volatility;

potentially fat tails play a secondary role in capturing tail observations.5

Figure 3 shows the evolution of the skewness parameters for the trivariate VAR model with

dynamic skewness. Despite the relatively wide credible intervals, we detect time variation in the

asymmetry parameter for the variables. The EPU index – which typically has a positive skew-

ness – exhibits the strongest time variation; it tends to increase in association with crises and

decrease afterwards. For inflation, we observe a gradual decline in skewness, from an apparently

symmetric distribution (no skewness) at the beginning of the sample to some evidence for negative

skewness later on. This negative skewness is in line with the downside risk of inflation typically

found between the mid-1990s and the early 2020s by De Polis et al. (2024), and for a somewhat

shorter period by Le Bihan et al. (2023). The evidence for (time-varying) skewness is the weakest

for industrial production, where credible intervals basically always include zero for the skewness

parameter (implying a symmetric distribution), except for a short period in the mid 2010s, when

skewness turns slightly positive. While this should not be over-interpreted, we note that indus-

trial production growth can be seen as representing the evolution of the real economy and from

3The number of lags is set based on the Schwarz (1978) criterion applied to VARs assumed to have Gaussian and
homoskedastic disturbances which have been estimated with maximum likelihood.

4Chan and Eisenstat (2018) and Karlsson et al. (2023) compute the marginal likelihood for model comparisons
using an importance sampling method. Since the VAR dynSkew-T.SV model contains high-dimensional latent state
space parameters, integrating the latent variables in the importance sampling steps and coming up with a good
proposal sampling distribution is challenging. Therefore, formal model selection based on marginal likelihoods is
beyond the scope of this paper. It is, however, an interesting topic for future research.

5The posterior mean of the degrees of freedom parameter is approximately 15, suggesting somewhat heavier-than-
Gaussian tails.
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Figure 2: Estimated log stochastic volatility.

it is industrial production growth rate, pt is CPI inflation and et is the EPU index (divided by ten). Estimated log volatility

of the VAR model with fat tails and dynamic skewness is given by the red solid line; the coloured band gives the 80% credible

interval. The dashed black line shows the estimated mean log volatility from the VAR model with Gaussian error terms. The

shaded areas highlight the recession periods based on the NBER indicators.
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that perspective, the positive skewness found stands in contrast with the negative skewness that

Iseringhausen (2024) tended to find for GDP growth; it is, however, in line with the finding of

Karlsson et al. (2023). In addition, due to the dynamics of the model and the contemporaneous

correlation between the (reduced form) shocks, the model can still capture asymmetry in industrial

production growth, such as larger negative movements during recessions (see Figure 1).6

Looking at the data series in Figure 1 together with the estimates of the stochastic volatility and

the conditional skewness in Figures 2 and 3, we see that large movements in the variables around

crisis times is mostly captured by an increase in the volatility and less so by an increase in the

asymmetry. That is, the model attributes large movements to draws from an innovation distribution

that is more spread-out, rather than draws from a distribution with increased asymmetry. The only

exception is the EPU index, where not only dynamic skewness is strongest, but the difference in

the stochastic volatility estimates for models with and without skewness are the most salient (last

panel of Figure 2).

Next, we present the VAR dynamics using the impulse-response functions based on unit shocks.

In this case, the impulse-response functions only depend on A and the dynamic parameters of the

model (Bj , j = 1, . . . , p), which are constant over time, so responses to unit shocks are also time

invariant. These impulse-response functions, together with the 80 percent credible intervals, are

shown in Figure 4.7

The impulse-response functions are in line with what one would expect. In particular, the shock

to the EPU index (third column in Figure 4) is in line with the findings of the previous literature in

that it holds back real activity – here given by industrial production growth (first row). In addition,

the effect of the shock to the EPU index resembles a (negative) aggregate demand shock in that it

also has a negative effect on inflation (second row). Regarding the other shocks, it can be noted

that the point estimate of a shock to industrial production growth (first column) also resembles

6As a general caveat, it should be noted that model misspecification could affect our results. Since the model
features dynamic skewness but constant parameters in the conditional mean equation, time variation in the conditional
mean of one or more of the variables in the model – such as the time-varying “trend inflation” in, for example, Chan
et al. (2018) – might partially be absorbed by the skewness parameter. To investigate this further, a model with time
variation both in the skewness equation and the conditional mean equation would have to be estimated. However,
such an extension is beyond the scope of the current paper.

7Our model does feature stochastic volatility, so the impulse-response functions of a one standard deviation shock
are time-varying. In this case, time variation solely comes from the time-varying standard deviation, presented in
Figure 2. By presenting responses to unit shocks, we isolate the dynamics of the conditional mean from the stochastic
volatility, and hence make interpretation of the impulse-response functions easier.
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Figure 3: Estimated time-varying skewness.

it is industrial production growth rate, pt is CPI inflation and et is the EPU index (divided by ten). Estimated skewness

(posterior mean) of the VAR model with fat tails and dynamic skewness is given by the red solid line; the coloured band gives

the 80% credible interval. The shaded areas highlight the recession periods based on the NBER indicators.
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an aggregate demand shock as it is associated with an increase in inflation and a decrease in the

EPU index. It should be noted though that the increase in inflation is not significant; the credible

interval always includes zero. Finally, a shock to inflation (second column) looks very much like a

supply-side (cost-push-type) shock; the effect on industrial production growth is negative (after a

short, slightly positive effect) and the EPU increases.

Overall, the within-sample evidence shows that there is some support for time-varying skewness.

And the dynamics of the model – illustrated by the impulse-response functions – are in line with

mainstream findings from the previous literature on the relation between the EPU index and the

macroeconomy.

3.2 Forecasting Performance

We next consider how different model features – in particular dynamic skewness – affect forecasting

performance; both point and density forecasts are considered. Five different forecast horizons

are assessed: one month, two months, three months, six months and one year. Our benchmark

model is the univariate AR(3) model with normally distributed error terms. This is first compared

to univariate specifications with error terms that allow for fat tails and asymmetry, where we

consider both constant and time-varying skewness. We then also compare the benchmark model

to trivariate VAR specifications, where three different trivariate specifications are used: Gaussian

innovations, fat-tailed innovations with constant skewness, and fat-tailed innovations with time-

varying skewness. All models are estimated allowing for stochastic volatility.

The forecast evaluation is performed on an expanding sample. We use the mean squared forecast

error (MSFE) for point forecast evaluation. At forecast horizon h, the MSFE is calculated as

MSFEi,h =
1

T − T0 − h+ 1

T−h∑
t=T0

[ (
ȳi,t+h|t − yoi,t+h

)2 ]
,

where ȳi,t+h|t is the point forecast – the posterior mean – using all the information up to time t

and yoi,t+h is the realization of the variable i, h-steps ahead. A lower MSFE indicates better model

performance.

For density forecasts, we use the log predictive score (LPS). The LPS is defined such that a
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Figure 4: The impulse response functions of the model with time-varying skewness and fat tails.

it is industrial production growth rate, pt is CPI inflation and et is the EPU index (divided by ten). Impulses are shown in the

column headers, response variables are given by the rows. The size of the impulse is one unit shock. The red solid line gives the

point estimate and the coloured bands show the 80% credible interval. The size of the effect in percentage points is represented

on the vertical axis. The horizontal axis shows the horizon in months.
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larger value indicates a better forecast performance of the model and is given by

LPSi,h =
1

T1 − T0 − h+ 1

T1−h∑
t=T0

[
log

∫
p(yoi,t+h|θ,y1:t)p(θ|y1:t)dθ

]

=
1

T1 − T0 − h+ 1

T1−h∑
t=T0

[
log

∫ ∫
p(yoi,t+h|θ,y1:t,yt+1:t+h−1,θt+1:t+h)

p(yt+1:t+h−1,θt+1:t+h|θ,y1:t)p(θ|y1:t)dyt+1:t+h−1dθt+1:t+hdθ

]

≈ 1

T − T0 − h+ 1

T−h∑
t=T0

[
log

1

R

R∑
r=1

p(yoi,t+h|θ(r),y1:t,y
(r)
t+1:t+h−1,θ

(r)
t+1:t+h)

]
,

where θ(r) is a posterior sample of the (time-invariant) parameters of the TV skewness VAR model

for r = 1, . . . , R; y
(r)
t+1:t+h−1 represents a simulated path of intermediate observations between t+1

and t + h − 1; θ
(r)
t+1:t+h represents a simulated path of the time-varying parameters between t + 1

and t+h; and p(yoi,t+h|θ
(r),y1:t,y

(r)
t+1:t+h−1,θ

(r)
t+1:t+h) is the 1-step ahead posterior predictive density

function (the score) evaluated at the realization of the variable, conditional on the posterior sample

of parameters and the simulated path.

To compare both point and density forecasting performance, we apply the one-sided test of

Diebold and Mariano (1995), where the standard errors are calculated using the Newey-West esti-

mator for the standard errors, in line with previous work by Clark (2011) and Clark and Ravazzolo

(2015). Forecasts are generated from January 2010 to March 2023 for all horizons, which allows

for evaluating 159 forecasts uniformly over all horizons.

Tables 1 and 2 show forecast comparison results for point and density forecasts, respectively. The

first row in each panel (for each variable) contains the MSFE and the LPS values for the univariate

Gaussian model, and in the rest of the rows, relative values (relative MSFE and difference in LPS)

are shown.

Looking at point forecasts, no quantitatively meaningful improvements can be found relative

to the forecasts of the baseline univariate Gaussian model for industrial production growth or

CPI inflation (even if the Diebold-Mariano test indicates that the univariate model with fat tails

and dynamic skewness has a significantly lower MSFE at the three-month horizon for industrial

production growth). In contrast, when forecasting the EPU index, allowing for fat tails and constant
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or dynamic skewness improves over Gaussian innovations in a univariate framework at the two

longest horizons. Turning to the trivariate models, significant improvements over the benchmark

model can only be found in one case, namely when forecasting the EPU index at the six-month

horizon using the model with fat tails and dynamic skewness; it can, however, be noted that this

MSFE is higher than that of the corresponding univariate model. The overall impression is that

the trivariate models are not particularly successful compared to the univariate models when it

comes to forecasting.

Regarding the density forecasts, we find no systematic improvements vis-á-vis the univariate

Gaussian model. While there are some cases where the LPS is higher for the model with fat tails

and dynamic skewness, these improvements are never significant. Similarly, using the trivariate

VAR model never leads to significant improvements in density predictions.
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Table 1: MSFEs

1M 2M 3M 6M 12M

(a) Industrial production growth

Univariate AR(3)
G.SV 4.465 11.131 14.202 16.373 23.982
Skew-T.SV 1.000 1.000 1.005 1.004 1.017
dynSkew-T.SV 0.994 0.997 0.997† 1.001 1.016

Trivariate VAR(3)
G.SV 0.994 1.021 1.056 1.153 1.202
Skew-T.SV 0.994 1.030 1.069 1.152 1.191
dynSkew-T.SV 0.989 1.026 1.063 1.146 1.190

(b) CPI inflation

Univariate AR(3)
G.SV 0.104 0.334 0.629 1.565 3.395
Skew-T.SV 1.003 1.003 1.006 1.005 1.010
dynSkew-T.SV 1.007 1.007 1.008 1.007 1.011

Trivariate VAR(3)
G.SV 1.092 1.128 1.134 1.109 1.116
Skew-T.SV 1.094 1.123 1.127 1.099 1.101
dynSkew-T.SV 1.090 1.118 1.120 1.091 1.102

(c) EPU/10

Univariate AR(3)
G.SV 16.699 33.934 43.480 59.102 68.458
Skew-T.SV 1.043 1.006 0.977 0.933* 0.883*
dynSkew-T.SV 1.046 1.010 0.981 0.939* 0.887*

Trivariate VAR(3)
G.SV 1.004 0.999 0.989 0.986 0.986
Skew-T.SV 1.025 0.997 0.976 0.958 0.938
dynSkew-T.SV 1.024 0.992 0.970 0.949* 1.009

The first line in each panel reports the MSFE of the benchmark univariate model with Gaussian

innovations based on forecasts generated from 2010M01 to 2023M03 (159 recursive estimations).

The relative performance (all other rows) is computed as the ratio of the MSFE of alternative

specifications over the benchmark, that is, entries less than 1 indicate that a given model has a

lower MSFE. * denotes that the model in question significantly outperforms the benchmark model

at the 5% level based on the one-sided Diebold and Mariano (1995) test where the standard errors

of the test statistics are computed with the Newey–West estimator.
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Table 2: LPSs

1M 2M 3M 6M 12M

(a) Industrial production growth

Univariate AR(3)
G.SV -1.577 -2.149 -2.433 -2.652 -2.966
Skew-T.SV 0.009 0.109 -0.048 0.001 -0.006
dynSkew-T.SV 0.041 0.000 0.075 0.001 -0.007

Trivariate VAR(3)
G.SV -0.021 -0.119 -0.034 -0.209 -0.246
Skew-T.SV -0.058 -0.138 -0.087 -0.181 -0.232
dynSkew-T.SV -0.047 -0.116 -0.141 -0.214 -0.275

(b) CPI inflation

Univariate AR(3)
G.SV -0.294 -0.874 -1.197 -1.639 -1.999
Skew-T.SV 0.009 0.005 0.000 -0.010 -0.066
dynSkew-T.SV 0.005 -0.011 -0.030 -0.035 -0.219

Trivariate VAR(3)
G.SV -0.031 -0.048 -0.058 -0.037 -0.016
Skew-T.SV -0.037 -0.058 -0.085 -0.098 -0.151
dynSkew-T.SV -0.039 -0.076 -0.102 -0.121 -0.228

(c) EPU/10

Univariate AR(3)
G.SV -2.537 -2.816 -2.944 -3.081 -3.243
Skew-T.SV -0.006 0.019 0.052 -0.014 0.073
dynSkew-T.SV -0.011 0.036 0.043 -0.009 0.029

Trivariate VAR(3)
G.SV -0.001 0.006 0.022 0.024 0.045
Skew-T.SV -0.002 0.018 0.042 0.028 0.078
dynSkew-T.SV -0.002 0.010 0.004 -0.004 0.013

The first line in each panel reports the LPS of the benchmark univariate model with Gaussian

innovations based on forecasts generated from 2010M01 to 2023M03 (159 recursive estimations).

The relative performance is computed as the difference of the LPS of alternative specifications and

the benchmark, that is, entries smaller than 0 indicate that a given model has a higher LPS. *

denotes that the model in question significantly outperforms the benchmark model at the 5% level

based on the one-sided Diebold and Mariano (1995) test where the standard errors of the test

statistics are computed with the Newey–West estimator.
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4 Conclusions

In this paper, we have extended the standard Bayesian VAR with stochastic volatility to allow for

generalized hyperbolic skew Student’s t distribution in the innovations, where the skewness param-

eter is also allowed to vary over time. This specification permits a flexible modelling of innovations

in terms of fat tails and – potentially dynamic – asymmetry. These might be useful features when

modelling the macroeconomy, given the recent literature documenting the non-Gaussianity of many

macroeconomic variables. Our model nests specifications with Gaussian and fat-tailed innovations,

as well as the specification where asymmetry is constant over time, allowing us to analyse the

importance of these features in an empirical context.

In our empirical application, we revisit how aggregate uncertainty (captured by the EPU index)

affects the macroeconomy. This is done by estimating a trivariate VAR model including industrial

production growth, CPI inflation and the EPU index. Apart from the usual strong evidence for

time-varying volatility, we also document that the estimated skewness of the variables – primarily

the EPU index – changes over time. However, we also find that modelling innovations flexibly

typically does not improve the point or density forecasts. Finally, we confirm previous findings in

the literature that shocks to uncertainty resemble aggregate demand shocks, dampening both real

activity and inflation.
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Hoang Nguyen, Stepan Mazur and Pär Österholm acknowledge financial support from the project

”Improved Economic Policy and Forecasting with High-Frequency Data” (Dnr: E47/22) funded by

the Torsten Söderbergs Foundation. Stepan Mazur also acknowledges financial support from the

internal research grants at Örebro University.
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