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Abstract

In this paper, we assess whether key relations between US interest rates have been

stable over time. This is done by estimating trivariate hybrid time-varying parame-

ter Bayesian VAR models with stochastic volatility for the three-month Treasury bill

rate, the slope of the Treasury yield curve and the corporate bond-yield spread. As a

methodological contribution, we also allow for disturbances with heavy tails. We anal-

yse monthly data from April 1953 to February 2023 both within- and out-of-sample.

Our results indicate that the relations have not been stable; more specifically, there is

evidence that the equation of the corporate bond-yield spread is subject to time varia-

tion in its parameters. We also find that an increase in the corporate bond-yield spread

decreases the risk free rate. Finally, we note that while allowing for heavy tails receives

a fair amount of support within sample, it appears to be of more limited importance

from a forecasting perspective.
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1 Introduction

During the decade following the Great Recession, policy interest rates in many countries

reached historically low levels. However, several central banks – including the Federal Re-

serve, the Bank of England, the ECB, the Swiss National Bank and Sveriges Riksbank –

judged that a very low policy interest rate did not make monetary policy sufficiently ex-

pansive and in order to further ease the stance of monetary policy, the central banks also

employed unconventional monetary-policy tools.1 Interest rates were widely affected. Ef-

fects in the United States have been established on, for example, Treasury yields, swap rates,

yields on mortgage-backed securities and corporate bond yields; see, for example, Hancock

and Passmore (2011), Gagnon et al. (2018), Ihrig et al. (2018).2 Despite these monetary-

policy measures, inflation was typically low during this period, leaving policy rates at low

levels. As the corona crisis hit in 2020, there was accordingly little scope for central banks

to conduct conventional monetary policy – that is, cutting policy rates – and further un-

conventional measures were a common response. However, in the recovery after the corona

pandemic, inflation has surged in many countries and central banks have hiked policy rates

at an unusually high pace.

In addition to these more recent developments, it is also the case that interest rates

have varied substantially in a somewhat longer perspective. For example, interest rates (and

inflation) were notably higher in the late 1970s and early 1980s than during the 1960s or

the Great Moderation. Parts of this evolution can be explained by monetary policy being

conducted differently over time; see, for example, Romer and Romer (1989), Sargent (1999),

Clarida et al. (2000), Boivin (2006), Beechey and Österholm (2012) and Belongia and Ireland

(2016). An important question that arises in light of this is whether the empirical relations

between variables capturing various aspects of the interest-rate markets are stable or whether

they should be modelled as time-varying.

In this paper, we assess the stability of the relations between three key interest-rate

variables in the United States: the three-month Treasury bill yield, the slope of the Treasury

yield curve and the corporate bond-yield spread. In line with Duffee (1998), our empirical

analysis takes its starting point in a vector autoregressive (VAR) model. In order to study

1One important part of these unconventional means has been large-scale asset purchases, where focus
typically was on government bonds (Cecioni et al., 2011; IMF, 2013). Other types of assets have also been
purchased though. In the United States, the Federal Reserve has, for example, purchased mortgage backed
securities. Bernanke (2020) and Bhattarai and Neely (2022) provide a recent summary and review of the
literature on unconventional monetary policy and asset purchase programs.

2Further studies establishing effects on various markets include d’Amico et al. (2012), Rosa (2012) Wu
(2014), Neely (2015), Inoue and Rossi (2019), Dedola et al. (2021), Rossi (2021) and Miranda-Agrippino and
Nenova (2022).
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the issue of stability, we cast the model in a recently developed econometric framework,

namely the hybrid time-varying parameter Bayesian VAR with stochastic volatility of Chan

and Eisenstat (2018b). However, we extend Chan and Eisenstat’s methodology by allowing

for disturbances with heavy tails. This is done in order to address the empirical finding that

large shocks – often associated with increasing levels of risk and risk aversion, leading to

abruptly changing term and credit spreads during crisis times such as the oil crises of the

1970s, the Great Recession and the covid crisis – appear to arrive more frequently than if

shocks were drawn from a normal distribution.3 Relying on this extended framework, we can

conduct formal Bayesian model selection between VARs with time variation in none, one,

two or three of the equations.4

Our paper makes two contributions to the literature. First, we assess the stability of key

relations between US interest rates. In doing this, we provide further evidence on the inter-

action between corporate credit spreads and financial and macroeconomic variables. From a

more macroeconomic perspective, our study is hence part of the research related to the fact

that an increase in the corporate credit spread tends to be associated with a decrease in real

economic activity and a lower short risk-free rate; for studies addressing the effects of the cor-

porate credit spread on various variables – such as Treasury yields, inflation, GDP, employ-

ment, housing starts and industrial production – see, for example, Stock and Watson (1989),

Friedman and Kuttner (1998), Mody and Taylor (2004), Gilchrist et al. (2009), Gilchrist and

Zakraǰsek (2012), Boivin et al. (2013) and Prieto et al. (2016). However, our paper is also

related to a strand of research in financial economics whose emphasis lies on the effect that

the risk-free rate should have on corporate bond spreads. A negative relationship between

corporate bond-yield spreads and the risk free interest rate is typically found in this litera-

ture; see, for example, Nielsen and Ronn (1996), Duffee (1998), Collin-Dufresne et al. (2001),

Campbell and Taksler (2003), Batten and Hogan (2003), Van Landschoot (2008), Giesecke

et al. (2011), Österholm (2018) and Karlsson and Österholm (2019). Such a result is in line

with structural theoretical pricing models of risky corporate debt (Merton, 1974; Longstaff

and Schwartz, 1995; Collin-Dufresne and Goldstein, 2001) in which a negative relationship

3In line with this observation, there is a growing literature pointing to the potential importance of allowing
for heavy tails when modelling macroeconomic time series; see, for example, Fagiolo et al. (2008), Ascari et al.
(2015), Cross and Poon (2016), Chiu et al. (2017), Liu (2019), Kiss and Österholm (2020), and Brunnermeier
et al. (2021).

4 It can be noted that there is a large literature pointing to the benefits of using models that explicitly
address the issue of heteroskedasticity in macroeconomics; see, for example, Fountas and Karanasos (2007),
Clark (2011), Carriero et al. (2015), Chan (2017), Trypsteen (2017), Koop and Korobilis (2019), Clark et al.
(2020) and Karlsson and Österholm (2020, 2023). In line with this literature – and Chan and Eisenstat
(2018b) – we take stochastic volatility as a given feature of our model. This modelling choice also has
empirical support. In Table 4 in Appendix C, we provide marginal likelihoods which compare all models in
Table 1 to the corresponding homoskedastic models. The support for stochastic volatility is very strong.
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between the risk-free interest rate and the corporate bond yield spread stems from the fact

that a higher risk-free interest rate is associated with higher expected cash-flow – hence de-

creasing future default probability. While there is little ambiguity regarding the sign of the

relationship, its strength is more debated. 5 Our analysis adds to this literature by allowing

for time variation in the relationship between the risk-free rate and corporate bond yields.

Second, by extending the hybrid time-varying parameter Bayesian VAR with stochastic

volatility framework of Chan and Eisenstat (2018b), we provide a methodological setting

that could be useful for researchers, analysts and policy makers in both macroeconomics and

finance. Bayesian VARs with time-varying (drifting) parameters and stochastic volatility

appear to be an increasingly popular tool in macroeconomic modelling; a few recent exam-

ples include Bianchi and Civelli (2015), Akram and Mumtaz (2019), Karlsson and Österholm

(2020), Mumtaz and Petrova (2022) and Karlsson and Österholm (2023).6 Chan and Eisen-

stat (2018a) made an important contribution to this field by providing tools for model

comparison based on marginal likelihoods. In a related paper – which is the methodological

foundation for our paper – they then also showed how inference can be drawn regarding time

variation in the parameters of a subset of the equations of the VAR (Chan and Eisenstat,

2018b). Such analysis can be useful when analysing low-dimensional models; see, for exam-

ple, Karlsson and Österholm (2020, 2023). In this paper, we extend Chan and Eisenstat

(2018b)’s framework so that it also allows for disturbances with heavy tails in a similar vein

to Karlsson et al. (2023). As pointed out above, this is a feature that has been shown to

have relevance in macroeconomic and financial modelling, even if its importance seems to

differ somewhat depending on the application; see, for example, Chan (2020) and Kiss et al.

(2023). In summary, our framework allows for formal model selection based on marginal

likelihoods for hybrid time-varying parameter Bayesian VAR with stochastic volatility and

heavy tails, thereby providing a flexible and convenient tool for assessing various empirically

relevant aspects of a VAR model.

We apply our modelling framework to US data ranging from April 1953 to February 2023.

In addition to conducting within-sample analysis – where we both perform model selection

and describe model dynamics – we also assess the models’ performance out-of-sample; this

is done by evaluating the forecasting performance with respect to both point and density

5In a seminal paper, Duffee (1998) finds that the callability of the corporate bonds is crucial, and the
empirical relationship between the risk free rate and the yield of non-callable corporate bonds is much weaker;
this result is also supported by Batten et al. (2005) who study the Australian bond market. Further empirical
analysis suggests that the relationship is weaker once the dynamics of the interest rate series is taken into
account (Neal et al., 2015) and for investment-grade corporate bonds (Dupoyet et al., 2023).

6Seminal contributions to this type of model were made by Cogley and Sargent (2005) and Primiceri
(2005).
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forecasts.

Briefly mentioning our results, we find that the relations between the variables in the

model have not been stable. Both the within-sample evidence based on marginal likelihoods

and our out-of-sample forecast evaluation suggest that improvements are to be had when

parameters in the corporate bond-yield spread equation are allowed to vary. In addition, we

find that an increase in the corporate bond-yield spread decreases the risk-free rate, and that

an increase in the three-month Treasury bill rate tends to decrease the corporate bond-yield

spread. Finally, we note that even though heavy-tailed innovations receive a fair amount

of support within sample, it appears to be of more limited importance from a forecasting

perspective.

The rest of this paper is organised as follows: In Section 2, we describe our methodological

framework. Data are presented in Section 3. In Section 4, we present the results from our

empirical analysis. Finally, Section 5 concludes.

2 Econometric framework

In this section, we first present the original framework of time-varying parameter VAR with

stochastic volatility (TVP-VAR-SV) developed by Primiceri (2005) and Cogley and Sargent

(2005). We then show how it can be extended within the hybrid TVP-VAR-SV framework

of Chan and Eisenstat (2018b) – in which some equations in the VAR can have constant

parameters while other equations have time-varying parameters – to allow for disturbances

with heavy tails. Finally, we show how Bayesian inference can be conducted in this extended

setting.

2.1 A TVP-VAR model with Gaussian SV innovations

Let yt = (y1t, . . . , ykt)
′

be a k-dimensional vector of endogenous variables. A time-varying

parameter VAR model with Gaussian stochastic volatility innovations is then given by

Atyt = bt + B1tyt−1 + . . .+ Bptyt−p + H
1/2
t εt, t = 1, . . . , T, (1)

where bt is a k-dimensional vector of time-varying intercept and Bjt is a k × k dimensional

matrix of regression coefficients for j = 1, . . . , p; At is a k × k lower triangular matrix with

ones on the diagonal that describes the time-varying contemporaneous interaction of the

endogenous variables; Ht = diag(exp(h1,t), . . . , exp(hk,t)) is a k × k diagonal matrix and

5



εt is a k-dimensional vector of standardized Gaussian error terms. We assume that the

log-volatilities and the time-varying parameters follow random walk processes,

ht = ht−1 + ζt,

θi,t = θi,t−1 + ηi,t,
(2)

where ht = (h1t, . . . , hkt)
′, ζt ∼ N (0,Σh) for Σh = diag(σ2

h,1, . . . , σ
2
h,k); θit stacks the vector

of the time-varying regression coefficients in the ith equation and the free element in the

ith row of the lower triangular matrix At and ηi,t ∼ N (0,Σθ,i) for Σθ,i = diag(σ2
θ,i) =

diag(σ2
θ,i,1, . . . , σ

2
θ,i,ki

) where ki is the number of time-varying parameters in equation i.

2.2 A hybrid TVP-VAR model with orthogonal Student’s t SV

innovations

In order to account for heavy tails, we extend Equation 1 by including a mixing variable,

Wt, in the innovations such that the model is given as

Atyt = bt + B1tyt−1 + . . .+ Bptyt−p + et, t = 1, . . . , T, (3)

where et = W
1/2
t H

1/2
t εt and Wt = diag(w1,t, . . . , wk,t) with wi,t ∼ IG(

νi
2
,
νi
2

); Ht and εt are

defined as above. The structural form error terms et are thus t-distributed with νi degrees of

freedom and the marginal distribution of yi,t is a linear combination of orthogonal Student’s

t (OT) distributions; see the discussion in Karlsson et al. (2023).

The hybrid TVP-VAR of Chan and Eisenstat (2018b) works by leveraging the triangular

structure of At. Let xi,t = (1,y
′
t−1, . . . ,y

′
t−p,−y1,t, . . . ,−yi−1,t). We can then write equation

i of the VAR in equation (3) as

yi,t = xi,tθi,t +
√
wi,t exp(hi,t/2)εi,t. (4)

The recursive structure together with the independent evolution of θi,t makes equation by

equation estimation straightforward if there also is prior independence between the equations.

Time-varying parameters is then turned on or off for an equation by allowing the diagonal

elements of Σθ,i to be positive or restricting them to zero.

In general, the hybrid TVP-VAR model with orthogonal Student’s t stochastic volatility

(OT-SV) innovations provides a flexible framework for modelling the joint evolution of en-

dogenous variables. The magnitude and the frequency of the shocks are driven by the heavy
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tails and stochastic volatility components, while the interaction among endogenous variables

is captured through the time-varing parameter setting. The hybrid TVP-VAR model with

OT innovations reduces to the Gaussian case when the degrees of freedom ν →∞.

2.3 Inference and model selection

We assume vague but proper prior distributions for the parameters of the TVP-VAR model.

For example, θi,0 follows a Minnesota prior with the overall shrinkage l1 = 0.2 and the

cross-variable shrinkage l2 = 0.5; see Koop and Korobilis (2010). The prior for the degrees

of freedom is a Gamma distribution. Following Kastner and Frühwirth-Schnatter (2014),

the prior for the variance of the of shocks to the volatility and time-varying parameters

are Gamma distributions; this should be less influential compared to the conjugate inverse

Gamma prior when true variance values are small. Details on the prior distributions and

and overview of the MCMC scheme used for posterior inference is provided in Appendix A.

We compare the hybrid TVP-VAR models with different assumptions of innovations using

the marginal likelihood computed via the multi-stage importance sampling as in Chan and

Eisenstat (2018b). In order to select a good proposal distribution to approximate the high-

dimensional integration of the marginal likelihood, we divide the model parameters into fix

parameters and TVP latent variables. First, we use the cross-entropy method (Chan and

Eisenstat, 2018a) to learn the proposal distribution of the fix parameters. Then, given a

sample of the fix parameters, we calculate the integrated likelihood of the TVP equation

using another level of importance sampling; see details in Appendix B. When comparing

models, the model with the highest marginal likelihood is preferred by the data.

3 Data

For our empirical analysis, we use monthly interest-rate data from the United States. The

sample ranges from April 1953 to February 2023. The three interest-rate variables we use

are i) the three-month Treasury bill rate, ii) the difference between the yield on the ten-year

Treasury bond and the three-month Treasury bill rate, and iii) the corporate yield spread.

The corporate yield spread is defined as the yield on BAA corporate bonds minus the yield

on a ten-year Treasury bond. These variables are henceforth referred to as the short rate,

the slope and the BAA spread, respectively.

Figure 1 shows the time series of the three variables. The shaded areas mark NBER

recession periods. These periods are usually associated with a rise in the BAA spread,
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signalling tighter financial conditions in association with economic downturns.

A visual inspection of the short rate in the first panel supports the claim that our sample

period contains some different interest-rate environments. The sample starts with moderate

interest rates in the 1950s and 1960s, which is followed by high nominal rates (and high

inflation) around the oil crisis and the collapse of the gold standard. Since the early 1980s

– following the disinflationary efforts of the Federal Reserve (”the Volcker disinflation”) –

interest rates (and inflation) have largely been on a declining trend. However, the era of

falling and low interest rates – which included the Great Moderation and the period after

the Great Recession – came to a halt in the recovery after the corona pandemic. Relatively

strong aggregate demand – in parts induced by fiscal policy – combined with Russia’s attack

war on Ukraine and other supply distortions, made inflation surge and interest rates rise.

We next assess whether these changes to the interest-rate environment are associated with

changing empirical relationships over time in our chosen reduced-form setting.

0
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−2.5

0.0

2.5

1960 1980 2000 2020
Slope

2

4

6

1960 1980 2000 2020
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Figure 1: Data

Percent on the vertical axis for the three-month Treasury bill rate. Percentage points on the vertical axis for the slope and the

BAA spread.
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4 Empirical analysis

In accordance with Duffee (1998), we estimate trivariate VAR models. We define the vector

of dependent variables in equation 1 as yt = (it, st, ct)
′
, where it is the short rate, st is the

slope and ct is the BAA spread.7 Lag length in all models is set to p = 3.

The within-sample analysis focuses on whether time variation in parameters – in combi-

nation with heavy-tailed innovation distributions – can improve the model, while the out-of-

sample analysis investigates how these features impact forecasting performance. Hence, our

analysis sheds light on whether relations have changed over our sample period, and whether

these changes impact the way we should conduct modelling and forecasting.

4.1 Within-sample results

We first analyse the importance of time-varying parameters and heavy tails in our proposed

empirical setup. We do that by estimating VAR models with different specifications for

time variation in the coefficients and different innovation distributions. Since we deal with

a low dimensional model, we consider all permutations – that is, all possibilities with zero,

one, two or three equations with time-varying coefficients. Moreover, we estimate all models

with Gaussian as well as heavy-tailed (orthogonal Student’s t) innovation distributions. Log

marginal likelihoods are presented in Table 1, together with the estimated degrees of freedom

in the models allowing for heavy tails.

If we first compare the models with Gaussian innovations, it can be seen that the model

with time variation only in the equation for the BAA spread has the highest log marginal

likelihood, and hence it is the preferred specification. It is also interesting to note that the

second best model is the specification with constant parameters; this suggests that drifting

parameters is an important feature in the equation for the BAA spread, but not in the

equations for the two other variables. This interpretation is further supported by the rest

of the log marginal likelihoods. As can be seen from the table, the model which has time

variation in the equation for the BAA spread and the equation for the slope is ranked third,

and the model which has time variation in the equation for the BAA spread and the equation

for the short rate is ranked fourth. The model ranked last – by a wide margin – is that with

time variation in the equations for the short rate and the slope, but not in the equation for

BAA spread.

7A similar trivariate specification was also used by Österholm (2018) and Karlsson and Österholm (2019)
on Australian data.
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Table 1: Log marginal likelihood for VAR models and estimated degrees of freedom in t-
distribution (where applicable)

Model
Gaussian Orthogonal Student’s t

Log marginal likelihood Log marginal likelihood Degrees of freedom
000 1125.39 1133.78 (13.89; 24.48; 12.50)
100 1077.77 1085.11 (10.38; 25.62; 13.40)
010 1079.97 1087.25 (13.48; 25.19; 12.85)
001 1158.11 1165.70 (14.10; 27.05; 8.80)
110 1030.99 1038.52 (10.05; 27.26; 13.13)
101 1108.88 1115.44 (11.84; 26.13; 9.49)
011 1111.56 1119.50 (13.05; 25.73; 8.31)
111 1061.56 1067.67 (12.46; 26.13; 9.40)

The cross entropy methods of Chan and Eisenstat (2018b) are used to calculate the log marginal likelihoods.

The model number indicates the combination of constant and time-varying parameters, for example 001

indicates that only the third equation in the TVP VAR model has time-varying parameters. The order

of the variables are 1) the short rate, 2) the slope and 3) the BAA spread. We first sample 120,000 total

draws from the conditional posterior distributions with 20,000 discarded as burn-in. Then, all log marginal

likelihoods are estimated using 20,000 draws from the proposal distributions; for details, see Appendix B.

Estimated degrees of freedom is given by the mean from the posterior distribution.

Turning to t-distributed innovations, heavy tails improve the model. Comparing models

pairwise to the case with Gaussian innovations, the difference is substantial in all eight cases;

using the scale of two times the difference in log marginal likelihood and the terminology of

Kass and Raftery (1995), the evidence in favour of heavy tails is in all cases “very strong”.8

As can be seen from the rightmost column in Table 1, the innovations of the equations of the

short rate and the BAA spread are associated with heavier tails than the innovations of the

equation for the slope. The estimated degrees of freedom for the former two range between

approximately eight and 14; for the slope, the corresponding range is 24 to 27.

The ranking of the models with t-distributed innovations is identical to that we found with

Gaussian errors. Accordingly, the model with t-distributed innovations and time variation

only in the equation for the BAA spread has the highest log marginal likelihood of all models.

It can be noted that the evidence in favour of time variation in the equation for the BAA

spread (but no other equation) also is ”very strong”; comparing it to the best model with a

different specification concerning the dynamics – that is, the model with constant parameters

in all equations and t-distributed innovations – we find that two times the difference in log

marginal likelihood is 63.84.

Some insights as to why the model with time variation in the equation for the BAA

8The cutoff point for “very strong” – which is the highest category – is 10.
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spread was selected can be provided through a visual inspection of the estimated parameters

of the model in which we allow for time variation in all the equations of the VAR (that is,

the model denoted 111 in Table 1). We use the version of the fully time-varying model which

allows for fat-tailed innovation distribution. The evolution of the parameters – given by the

posterior mean and the 80 percent credible band – is shown in Figures 3 to 5 in Appendix

C. For the short rate (in Figure 3), the coefficients – with the possible exception of the first

lag of the slope – move very modestly over time. Turning to slope (in Figure 4), we again

see a limited amount of movement over time; in this case the coefficients on the first own

lag and the contemporaneous short rate stand out as showing more movement. However,

looking at the coefficients for the BAA spread in Figure 5, we see quite a few coefficients that

show what appears to be a reasonably large amount of movement over time. For this model

there are substantial movements in the coefficients for the first lag of all variables, for all the

lagged values of the BAA spread itself, as well as the coefficients governing contemporaneous

relations.

It was established above that the model with t-distributed innovations and time variation

in the equation for the BAA spread was the preferred one. We next look further into the

dynamics of this model. Seeing that we are working with VAR models, our focus will be on

the impulse-response functions. These are given in Figure 2.

It should first be noted that the size of the impulses is one standard deviation. Since

we have a model with stochastic volatility, the standard deviation is time-varying. For each

variable in the model, this is given by the horizon-zero response of the variable to a shock

to itself; for clarity, it is also provided in Figure 6 in Appendix C. As can be seen, there

is non-negligible variation in shock volatility over time for all three variables. Substantial

peaks for the short rate (first row, first column) and slope (second row, second column) can

be found in the early 1980s when there were large movements in the short rate – movements

which partly were due to the policy decisions associated with the Volcker disinflation. For

the BAA spread (third row, third column), we see the most pronounced peaks around the

Great Recession and the corona crisis.

Turning to the effect that a shock to the short rate has, it can be seen that it – not

surprisingly – compresses the slope (second row, first column). It can also be noted that the

effect of the shock dies out quite slowly; this feature applies to several of the impulse-response

functions of the model and reflects the fact that the variables of the system have a fairly

high persistence – in particular the short rate. In line with the majority of the literature

studying the effect of the risk-free interest rate on the corporate bond spread, we also find

that this shock tends to decrease the BAA spread (third row, first column). While the point
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estimates indicate that the dynamic effect that this shock has on the BAA spread differs

a fair bit over the sample, it is only the initial decline in the BAA spread that is a robust

finding in terms of being significantly different from zero; this is illustrated in Figures 7 and

8 which give the impulse-response functions of the model at December 2008 (that is, during

the Great Recession) and February 2023 (that is, at the end of our sample). The significance

of the initial decline – but not of effects at longer horizons – also applies to the period around

the Volcker disinflation where there are some fairly large positive point estimates at longer

horizons.

The point estimate of a shock to the slope is generally associated with an increase in

the short rate (first row, second column), even if a decrease is sometimes found at longer

horizons. However, the effect is small and not significant; see Figures 7 and 8 for illustrations.

A shock to the slope also tends to decrease the BAA spread – at least at short horizons (third

row, second column); this is in line with such shocks indicating a stronger business cycle.

Finally, a shock to the BAA spread decreases the short rate (first row, third column); see

also Figures 7 and 8. This is an effect consistent with what studies relating the corporate

bond-yield spread to the macroeconomy have previously found. In line with this, we also

find an increase in the slope (second row, third column). It is worth noting that the large

differences in the effect on these variables that can be seen over time largely is due to the

size of the shock, where the volatility of the shock peaked around the Great Recession (and

is at similar levels at the end of the sample).

4.2 Forecasting performance

The within-sample evidence presented above favours both time-varying parameters in the

BAA equation and innovations with heavy tails. We next conduct an out-of-sample forecast

exercise to see if these features also help improve forecasting performance.

We consider both point and density forecasts, and analyse six forecast horizons: one

month, two months, three months, six months, one year and two years. Our benchmark

model is the constant parameter trivariate VAR model with Gaussian innovations. This is

compared to both the constant parameter trivariate VAR model with heavy-tailed innova-

tions and three models with time-varying parameters (discussed in Section 4.1) under both

Gaussian and heavy-tailed innovation distributions. All models are estimated allowing for

stochastic volatility, seeing the overwhelming evidence for that in macroeconomic data (see

footnote 4). We established above that the evidence for time-varying parameters is strongest

for the equation of the BAA spread and weakest for the equation of the short rate. We ac-
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cordingly first allow the equation of the BAA spread to have time-varying parameters. Then,

we also allow the slope equation to have time-varying dynamics, and, lastly, we consider the

fully time-varying model.

The forecast evaluation is performed on an expanding sample; the parameters are re-

estimated each time the sample is expanded. We use the mean squared forecast error (MSFE)

to evaluate point forecasts. At forecast horizon h, the MSFE is calculated as

MSFEi,h =
1

T − T0 − h+ 1

T−h∑
t=T0

[ (
ȳi,t+h|t − yoi,t+h

)2

]
,

where ȳi,t+h|t is the point forecast – the posterior mean – using all the information up to

time t and yoi,t+h is the realization of the variable i, h-steps ahead. A lower MSFE indicates

better model performance.

For density forecasts, we use the log predictive score (LPS). The LPS of the posterior

predictive distribution is evaluated as

LPSi,h =
1

T1 − T0 − h+ 1

T1−h∑
t=T0

[
log

∫
p(yoi,t+h|Θ,y1:t)p(Θ|y1:t)dΘ

]

=
1

T1 − T0 − h+ 1

T1−h∑
t=T0

[
log

∫ ∫
p(yoi,t+h|Θ,y1:t,yt+)p(yt+|Θ,y1:t)p(Θ|y1:t)dyt+dΘ

]

≈ 1

T − T0 − h+ 1

T−h∑
t=T0

[
log

1

R

R∑
r=1

p(yoi,t+h|Θ(r),y1:t,y
(r)
t+ )

]
,

with Θ(1), . . . ,Θ(R) being the posterior samples of the corresponding VAR model, y
(r)
t+ rep-

resents a simulated path of intermediate observations from t+ 1 to t+ h− 1 using Θ(r) and

p(yoi,t+h|Θ(r),y1:t,y
(r)
t+ ) is the 1-step ahead posterior predictive density function (the score)

evaluated at the realization of the variable, conditional on the posterior sample of parameters

Θ(r) and the simulated path. The LPS is defined such that a larger value indicates a better

forecast performance of the model.

To compare both point and density forecasting performance, we apply the one-sided test

of Diebold and Mariano (1995), where the standard errors are calculated using the Newey-

West estimator (Newey and West, 1987). This is in line with previous work on density

forecast comparisons, for example, Clark (2011) and Clark and Ravazzolo (2015). The first

estimation sample ranges from April 1953 to December 1999, and the last forecast is made

based on the sample April 1953 to February 2021. This allows us to evaluate 255 forecasts
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for all horizons.

4.2.1 Point forecasts

We initially focus on the point forecasting results. Table 2 presents MSFEs for the short rate,

the slope and the BAA spread, respectively. Absolute numbers are shown for the benchmark

model with constant parameters and Gaussian innovations, and relative MSFEs are given for

the other specifications. The relative MSFE is defined as the MSFE for the model of interest

divided by the MSFE of the benchmark model. Hence, a relative MSFE smaller than one

indicates that the model of interest is better than the benchmark. Models that outperform

the benchmark using the Diebold and Mariano (1995) test are marked with asterisks.

Looking at the MSFE results for the short rate we can note that time variation in the pa-

rameters typically does not materially affect point forecasting results. Relative MSFEs of the

Gaussian models with time-varying parameters tend to vary closely around one across hori-

zons and specifications; in a couple of cases, MSFEs are around ten percent lower than that

of the benchmark model but no significant improvements are found. In contrast, allowing for

heavy-tailed innovations helps in the model with constant parameters, where improvements

in MSFE are significant for all horizons; the improvements are, however, quantitatively neg-

ligible and not economically significant. Time variation together with heavy tails does not

improve forecasts much either; relative MFSEs are generally close to one and the two cases

that are statistically significant are not economically significant.

The results for the slope, presented in panel (b) of Table 2, are also meagre in terms of

improvements relative to the baseline model. Significantly lower MSFEs only appear for the

constant-parameter model with heavy-tailed error distributions at the two longest horizons

– improvements which are, again, quantitatively negligible. It can also be noted that at

the two longest horizons, MSFEs are substantially higher for the models with time-varying

parameters. To some extent, this appears to be driven by the fact that the benchmark

Gaussian model with constant parameters tends to have dynamics that are associated by

less persistence; this is illustrated in Figures 9 and 10 in Appendix C. This lower persistence –

which generates more rapid reversion of the forecasts of the slope to the unconditional mean

– pays off on average and very clearly at certain points in time, for example for the forecasts

generated between early 2002 and mid-2004. During this period short term movements in

the slope were substantial, which the persistent dynamics of the time-varying model could

not capture.

Results for the BAA spread are markedly different. Time variation in the parameters
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Table 2: MSFEs and relative MSFEs

1M 2M 3M 6M 12M 24M
(a) Short rate
G000 0.026 0.079 0.147 0.438 1.332 3.909
G001 0.995 0.995 0.996 1.008 0.994 0.985
G011 0.996 0.998 1.004 1.021 0.947 0.895
G111 0.989 0.978 0.952 0.905 0.942 1.076
T000 0.995* 0.992* 0.990* 0.986* 0.985** 0.990**
T001 0.991* 0.989 0.991 1.000 0.979 0.972
T011 0.993* 0.996 1.001 1.016 0.933 0.882
T111 0.988 0.981 0.960 0.911 0.943 1.071
(b) Slope
G000 0.051 0.135 0.210 0.406 0.678 1.113
G001 0.998 0.999 1.011 1.070 1.212 1.450
G011 1.005 0.988 0.944 0.926 1.225 1.550
G111 1.004 0.994 0.952 0.928 1.372 1.921
T000 1.002 1.006 1.004 0.996 0.989** 0.989**
T001 1.004 1.009 1.022 1.074 1.205 1.434
T011 1.008 0.989 0.943 0.924 1.213 1.529
T111 1.005 0.993 0.948 0.925 1.366 1.920
(c) BAA spread
G000 0.042 0.127 0.217 0.470 0.898 1.434
G001 0.911* 0.902* 0.876* 0.836* 0.769** 0.738**
G011 0.920* 0.910 0.884 0.834* 0.745** 0.712**
G111 0.925 0.926 0.910 0.878 0.809 0.820
T000 1.001 1.002 0.999 0.998 0.998 1.001
T001 0.913* 0.916 0.880* 0.831* 0.760** 0.734**
T011 0.922 0.923 0.887 0.839* 0.742** 0.711**
T111 0.928 0.934 0.905 0.861 0.783 0.806*

The first line of each panel reports the MSFE of the benchmark Gaussian VAR model

without time-varying parameters during January 2000 to March 2021 (255 estimations).

The relative performance is computed as the ratio of the MSFE of alternative specifications

over the benchmark; entries less than 1 indicate that the given model is better. ***,**,*

denote that the corresponding model significantly outperforms the benchmark at 1%, 5%,

10% level based on the one-sided Diebold and Mariano (1995) test where the standard errors

of the test statistics are computed with the Newey–West estimator (Clark, 2011).
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brings large improvements relative to the constant-parameter model when Gaussian innova-

tions are assumed. Most of this effect can be attributed to allowing for time variation in the

BAA-spread equation, while additional improvements can be had at the longer horizons if

we allow for time-variation also in the slope equation. The fully time-varying model always

has a higher MSFE than the other specifications with time-varying parameters. Flexibly

modelling the innovations does not benefit point forecasts of the BAA spread. Comparing

the models with heavy-tailed innovations to their Gaussian counterparts, we see very small

differences in relative MSFEs.

Overall, the point forecast performance partly supports the in-sample results with respect

to the issue of time variation in coefficients. For example, both the Gaussian and heavy-tailed

models with time variation in the equation for the BAA spread generate the lowest MSFEs

at horizons up to six months for the BAA spread when compared to their counterparts with

other dynamic specifications. However, benefits in terms of forecasting performance from

using these models do not carry over to all variables and horizons. We also note that with

respect to the question of heavy-tailed innovations, substantial support for heavy tails was

found within-sample; however, we see virtually no improvements in forecast precision from

allowing for this instead of Gaussian innovations.

4.2.2 Density forecasts

In this section, we consider how time variation in the parameters and heavy-tailed innovations

impact density forecasting performance. Table 3 shows results for all variables in a similar

structure as for point forecasts – that is, the benchmark model is the constant parameter

VAR with Gaussian innovations, for which the values of the LPS are presented. For the

other specifications, the improvement over the benchmark is given in units of LPS.

Starting with the short rate, results in panel (a) of Table 3 show that neither time vari-

ation in the parameters nor heavy-tailed innovations do much to improve density forecast

performance; there is only one significant entry (namely for the model with constant param-

eters and heavy-tailed innovations). While the magnitude of the difference in LPS is difficult

to interpret economically, it can, however, be noted that differences tend to be very small.

For the slope, there are some improvements to be had when one departs from the baseline

specification. According to panel (b) of Table 3, some models with time variation in the pa-

rameters significantly improve density forecasts at some of the shorter horizons. In line with

what we found for point forecasts, it seems that at longer horizons, time-varying parameters

can actually deteriorate forecast performance. Having taken time variation into account,
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Table 3: LPS and difference in LPS relative to the Gaussian VAR model without time-varying
parameter

1M 2M 3M 6M 12M 24M
(a) Short rate
G000 0.998 0.374 0.022 -0.718 -1.500 -2.356
G001 -0.001 -0.002 -0.013 -0.022 -0.033 -0.024
G011 -0.004 -0.012 -0.023 -0.044 -0.040 0.022
G111 -0.046 -0.034 -0.026 0.038 0.090 0.122
T000 0.015** 0.008 0.003 0.005 -0.006 -0.009
T001 0.005 0.000 -0.010 -0.018 -0.031 -0.043
T011 0.006 -0.001 -0.019 -0.037 -0.034 0.002
T111 -0.029 -0.013 -0.019 0.043 0.099 0.100
(b) Slope
G000 0.106 -0.385 -0.639 -1.045 -1.340 -1.607
G001 -0.000 -0.000 -0.005 -0.035 -0.101 -0.200
G011 0.024 0.053* 0.087** 0.105 -0.040 -0.217
G111 0.030 0.059* 0.101** 0.147* 0.011 -0.183
T000 0.006** 0.006** 0.005 0.010*** 0.014** 0.007*
T001 0.005* 0.004 -0.004 -0.031 -0.092 -0.197
T011 0.027 0.056* 0.092** 0.110* -0.026 -0.205
T111 0.031 0.060* 0.102** 0.149* 0.015 -0.184
(c) BAA spread
G000 0.406 -0.191 -0.510 -1.032 -1.569 -1.962
G001 0.072** 0.065* 0.087 0.227** 0.439*** 0.606***
G011 0.051 0.006 0.016 0.233** 0.449*** 0.593***
G111 0.059* 0.008 0.035 0.233** 0.435** 0.576***
T000 0.015** 0.010* 0.001 -0.004 -0.001 -0.035
T001 0.098*** 0.051 0.092* 0.230** 0.451*** 0.626***
T011 0.067** 0.057 0.095* 0.236** 0.454*** 0.595***
T111 0.097*** 0.058 0.057 0.233** 0.445** 0.579***

The first line of each panel reports the LPS of the benchmark Gaussian VAR model without

time-varying parameters during January 2000 to March 2021 (255 estimations). The differ-

ence in LPS is computed as the LPS of the alternative specifications minus the LPS of the

benchmark model; entries greater than 0 indicate that the given model is better. ***,**,*

denote that the corresponding model significantly outperforms the benchmark at 1%, 5%,

10% level based on the one-sided Diebold and Mariano (1995) test where the standard errors

of the test statistics are computed with the Newey–West estimator (Clark, 2011).
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there appears to be limited benefits from also allowing for heavy tails; the differences in LPS

between models with Gaussian and heavy-tailed disturbances are very small.

Lastly, there is strong evidence in favour of time-varying parameter specifications when it

comes to predicting the BAA spread. Most specifications at most horizons show significant

improvements in density forecasting performance. However, we once again find that the

benefits of using models with heavy-tailed disturbances are quite limited once time-varying

parameters have been taken into account. This holds for both models with constant param-

eters and models where time variation in the dynamic parameters are taken into account.

Summing up the density forecast results, we note that they echo the findings from the

point forecast evaluation in that allowing for time-varying parameters is beneficial when

forecasting the BAA spread, but not necessarily for the other variables of the model. And

we again note that allowing for heavy-tailed instead of Gaussian innovations does little to

improve forecast performance.9

5 Conclusions

In this paper, we have investigated whether the relations between three key interest-rate vari-

ables in the United States have been time invariant. This was done using hybrid time-varying

parameter Bayesian VARs with stochastic volatility. Extending existing methodology, we

allow for the models to have heavy-tailed innovations.

Our results indicate that the relations have not been stable. Model comparison based on

marginal likelihoods strongly suggests that the equation of the corporate bond-yield spread

is subject to time variation in its parameters but that the other two equations have been

stable. Out-of-sample forecasts show that both point and density forecasts of the corporate

bond-yield spread tend to improve by taking this time variation into account. The forecasting

performance with respect to the three-month Treasury bill rate and the slope, on the other

hand, lends less support to the models with time-varying parameters.

Strong support is also found for heavy tails based on the within-sample analysis (marginal

likelihood calculations). However, our out-of-sample analysis suggests that it appears to

be of more limited importance. This is in line with the somewhat mixed evidence in the

related literature; see, for example, Chiu et al. (2017), Liu (2019), Kiss and Österholm

(2020), Brunnermeier et al. (2021) and Kiss et al. (2023). It is unclear what this discrepancy

between the within- and out-of-sample analysis is due to but it does not seem unlikely that

9This is also illustrated by cumulative differences in LPS; see Figures 11 and 12 in Appendix C.
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the Bayesian methods that we employ are subject to the traditional problem of within-sample

overfitting. However, it can also be the case that it is due to the fact that out-of-sample

analysis uses the data inefficiently; see, for example, the discussion in Diebold (2015).

With respect to the effects that the shocks of the preferred model have, these are qual-

itatively largely in line with what one would expect ex ante. We specifically note that an

increase in the corporate bond yield spread decreases the three-month Treasury bill rate,

and that an increase in the three-month Treasury bill rate tends to decrease the corporate

bond yield spread. However, analysts, forecasters and policymakers – and others concerned

with the co-evolution of these variables – should consider the instability established in this

paper when conducting analysis or making decisions.
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Appendix

A Bayesian inference

This section discusses the prior distributions for the parameters in the hybrid TVP-VAR

models and the general MCMC inference scheme. The Bayesian inference using a Gibbs

sampler is extended to make inference on model parameters.

Following Chan (2023), we obtain the hybrid TVP-VAR by writing the structural form

VAR in equation (3) into a recursive system equation by equation using the non-centered

parameterization (NCP),

yi,t = xi,tθi,0 +Mixi,tΣ
1/2
θ,i θ̃i,t + w0.5

i,t exp(0.5hi,t)εi,t,

θ̃i,t = θ̃i,t−1 + η̃i,t, η̃i,t ∼ N (0, I),
(5)

where xi,t = (1,y
′
t−1, . . . ,y

′
t−p,−y1,t, . . . ,−yi−1,t); wi,t and εi,t are independently distributed

and wt = (w1,t, . . . wk,t) is the vector of the mixing variables; Mi ∈ {0, 1} is a binary

variable indicating that the ith equation of the VAR system has time-varying coefficients

if Mi = 1, and constant coefficients if Mi = 0 in which case θi,0 is the vector of fixed

regression coefficients. With time-varying coefficents the centered parameterization (CP) is

obtained as θi,t = θi,0 + MiΣ
1/2
θ,i θ̃i,t. It is also straightforward to see that θi,t − θi,t−1 =

MiΣ
1/2
θ,i (θ̃i,t − θ̃i,t−1). Here, we fix Mi and obtain different model specifications.

The observations in equation (5) can be written as a seemingly unrelated regression,

Yi = Xiθi,0 + Ziθ̃i + W
1/2
i H

1/2
i εi,

Tiθ̃i = η̃i,
(6)

where Yi = (yi,1, . . . , yi,T )
′
, Xi = (x

′
i,1, . . . ,x

′
i,T )

′
, Zi = Mi diag(xi,1Σ

1/2
θ,i , . . . ,xi,TΣ

1/2
θ,i ), θ̃i =

(θ̃
′

i,1, . . . θ̃
′

i,T )
′
, Wi = diag(wi) = diag(wi,1, . . . , wi,T ), Hi = diag(exp(hi)) = diag(exp(hi,1), . . . , exp(hi,T )),

εi = (εi,1, . . . εi,T )
′
, η̃i = (η̃

′

i,1, . . . η̃
′

i,T )
′

and Ti =


Iki 0 · · · 0

−Iki Iki
. . . 0

...
. . . . . .

...

0 · · · −Iki Iki

.
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A.1 Prior distribution

We denote Θ = {θ1:k,0,Σθ,1:k,Σh,1:k,ν, θ̃1:k,1:T ,h1:k,0:T ,w1:k,1:T} as the parameter set of the

hybrid TVP-VAR model with OT-SV innovations. Following the prior assumption in Karls-

son et al. (2023), we assume vague but proper prior distributions for the model parameters.

For example, the prior for the degree of freedom is νi ∼ G(2, 0.1) such that the prior mean of

the degrees of freedom is 20. The priors for the variances of the shocks to the volatility and

time-varying parameters are σ2
h,i ∼ G(1

2
, 1

2Vh
) for each i=1,. . . ,k, and σ2

θ,1:ki
∼ G(1

2
, 1

2Vθ
) where

ki is the number of time-varying parameters in equation i for each i=1,. . . ,k. The hyper pa-

rameters are set Vh = Vθ = 1, which lead to ±
√
σ2
h,1:k ∼ N (0, Ik) and ±

√
σ2
θ,1:ki

∼ N (0, Iki);

see Kastner and Frühwirth-Schnatter (2014). This prior is less influential in comparison to

the conjugated inverse gamma prior especially when the true value is small. The prior of the

initial volatility h0 is h0 ∼ N(ah0 ,Vh0) where ah0 = log Σ̂OLS is the estimated residual vari-

ance of a univariate AR(p) model using the ordinary least square method, and Vh0 = 4Ik;

see Clark (2011). The prior on the initial regression coefficients θi,0 follows a Minnesota prior

with the overall shrinkage l1 = 0.2 and the cross-variable shrinkage l2 = 0.5; see Koop and

Korobilis (2010). Finally, the prior for the mixing variables is based on the model assumption

wi,t|νi ∼ IG(νi
2
, νi

2
).

A.2 Estimation procedure

We outline the Gibbs sampler for the conditional posteriors. The implementation is described

in detail in the Online Appendix.

Let Ψ be a set of conditional parameters except the one that we sample from.

1. Sample (θ̃i,θi,0,Σθ,i) parameters for i = 1, . . . , k, using the ancillarity-sufficiency in-

terweaving strategy (ASIS) by proposed Yu and Meng (2011),

(a) Draw π(θ̃i|Ψ) in the non-centered parameterization (NCP) setting.

(b) Draw π(θi,0,Σθ,i|Ψ) in the NCP setting.

(c) Move θi = θi,0 +MiΣ
1/2
θ,i θ̃i in the centered parameterization (CP) setting.

(d) Draw π(θi,0,Σθ,i|Ψ) in the CP setting.

(e) Move θ̃i = (θi − θi,0)/MiΣ
1/2
θ,i in the NCP setting.

2. Sample π(hi,Σh,i|Ψ) using the ASIS proposed by Kastner and Frühwirth-Schnatter

(2014), for i = 1, . . . , k.

22



3. Sample wi,t for i = 1, . . . , k, and t = 1, . . . , T from Inverse Gamma distributions

following Geweke (1993).

4. Sample π(νi|Ψ) for i = 1, . . . , k, using an adaptive random walk Metropolis-Hastings

algorithm; see Roberts and Rosenthal (2009).

B Model selection

The marginal likelihoods of the hybrid TVP-VAR model with OT-SV innovations requires

integrating over a high-dimensional parameter space,

p(y1:T ) =

∫
p(y1:T |Θ)π(Θ)dΘ.

We divide the model parameters into two groups with the static parameters Θ1 = {θ1:k,0,Σθ,1:k,Σh,1:k,ν}
and the latent states Θ2 = {h1:k,w1:k}. Note that the conditional likelihood p(Yi|Θ2,Θ1)

can be derived analytically by integrating over θ̃1:k following Chan and Eisenstat (2018a).

The marginal likelihood can be obtained via importance sampling

p(y1:T ) =

∫
p(y1:T |Θ1)π(Θ1)dΘ1,

=

∫
p(y1:T |Θ1)π(Θ1)

f(Θ1|λ)
f(Θ1|λ)dΘ1.

(7)

The accuracy of the marginal likelihood depends on the approximation of the integrated

likelihood, p(y1:T |Θ1), and the proposal distribution, f(Θ1|λ). We apply the cross-entropy

methods to learn the proposal distribution f(Θ1;λ) as an approximation of the posterior

samples. We specify that the parametric families of f(Θ1;λ) are the multivariate Gaussian

distribution for (θ1:k,0), the independent Gamma distribution for ν and independent Gamma

distribution for (Σθ,1:k,Σh,1:k). Given the posterior samples Θ
(1)
1 , . . . ,Θ

(R)
1 from the posterior

density π(Θ|y1:T ), we find λ∗ that maximizes the likelihood estimate,

λ∗ = arg max
λ

1

R

R∑
r=1

log f(θ
(r)
1 ;λ).

The marginal likelihood can be approximated via importance sampling,

p(y1:T ) ≈ 1

N

N∑
n=1

p(y1:T |Θ(n)
1 )p(Θ

(n)
1 )

f(Θ
(n)
1 |λ∗)

,
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where Θ
(1)
1 , . . . ,Θ

(N)
1 ∼ f(Θ1;λ∗) are the samples from the proposal distribution of the

static parameters. The number of samples N is chosen such that the variance of the esti-

mated quantity using importance sampling is less than one. Here, the integrated likelihood

p(y1:T |Θ1) is calculated using an inner importance sampling loop based on a sparse matrix

representation; see the discussion in Chan and Eisenstat (2018a),

p(y1:T |Θ1) =
k∏
i=1

p(Yi|Θ1),

=
k∏
i=1

[∫
p(Yi|Θ2,Θ1)p(Θ2|Θ1)dΘ2

]
,

=
k∏
i=1

[∫
p(Yi|hi,wi,Θ1)p(hi,wi|Θ1)

f(hi,wi)
f(hi,wi)dhidwi

]
.

(8)

with importance function f(hi,wi) = f(wi|hi)f(hi) with a Gaussian distribution for the

log volatilities, hi ∼ N (ĥi,K
−1
hi ), and inverse Gamma for the mixing variables, wit|hit ∼

IG(ait, bit). The Online Appendix describes how the parameters of the importance functions

are obtained.
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C Further results

Table 4: Log marginal likelihood for VAR models with and without stochastic volatility

Model Gaussian-nonSV OT-nonSV Gaussian-SV OT-SV
000 185.25 609.24 1125.39 1133.78
100 452.03 632.06 1077.77 1085.11
010 193.39 585.97 1079.97 1087.25
001 202.16 576.10 1158.11 1165.70
110 459.72 604.56 1030.99 1038.52
101 468.76 593.39 1108.88 1115.44
011 210.24 547.85 1111.56 1119.50
111 475.90 561.71 1061.56 1067.67

The cross entropy methods of Chan and Eisenstat (2018b) are used to calcu-

late the log marginal likelihoods. The model number indicates the combination

of constant and time-varying parameters, for example 001 indicates that only

the third equation in the TVP VAR model has time-varying parameters. The

order of the variables are 1) the short rate, 2) the slope and 3) the BAA spread.

We first sample 120,000 total draws from the conditional posterior distribu-

tions with 20,000 discarded as burn-in. Then, all log marginal likelihoods are

estimated using 20,000 draws from the proposal distributions; for details, see

Appendix B.
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Figure 3: The time-varying parameters θ of the equation for the short rate of the model
with time-varying parameters in all three equations and heavy-tailed innovations.

The figure plots the evolution of the posterior distribution for the time-varying parameters θ in the short rate equation for the

model where dynamic parameters are time-varying in all three equations and innovations are modelled as heavy-tailed. The

solid (red) line shows the posterior mean while the blue band indicates the corresponding 80% credible interval. The first,

second and the third rows show the coefficients on the short rate, the slope and the BAA-spread, respectively, while different

columns representing different lags of the same variables. The last row shows the intercept of the equation.
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Figure 4: The time-varying parameters θ of the equation of the slope of the model with
time-varying parameters in all three equations and heavy-tailed innovations.

The figure plots the evolution of the posterior distribution for the time-varying parameters θ in the slope equation for the

model where dynamic parameters are time-varying in all three equations and innovations are modelled as heavy-tailed. The

solid (red) line shows the posterior mean while the blue band indicates the corresponding 80% credible interval. The first,

second and the third rows show the coefficients on the short rate, the slope and the BAA-spread, respectively, while different

columns representing different lags of the same variables. The last row shows the intercept of the equation and the parameter

capturing the contemporaneous relationship between the short rate and the slope.
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Figure 5: The time-varying parameters θ of the equation of the BAA spread of the model
with time-varying parameters in all three equations and heavy-tailed innovations.

The figure plots the evolution of the posterior distribution for the time-varying parameters θ in the BAA-spread equation for

the model where dynamic parameters are time-varying in all three equations and innovations are modelled as heavy-tailed.

The solid (red) line shows the posterior mean while the blue band indicates the corresponding 80% credible interval. The first,

second and the third rows show the coefficients on the short rate, the slope and the BAA-spread, respectively, while different

columns representing different lags of the same variables. The last row shows the intercept of the equation and the parameters

capturing the contemporaneous relationships between the BAA spread and the other variables.
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Figure 6: Stochastic volatility estimates (exp (ĥt))
0.5

from the model with time-varying
parameters in the equation for the BAA spread and innovations with heavy tails.

The red solid line gives the point estimate under the assumption of an Orthogonal Student’s t-distribution. The coloured bands

bands show the 80% credible interval.
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Figure 7: The impulse response functions of the model with time-varying parameters in the
equation for the BAA spread and innovations with heavy tails in December 2008.

Impulses are shown in the column headers, response variables are given by the rows. The size of the impulse is one standard

deviation. The red solid line gives the point estimate and the coloured bands show the 80% credible interval. The size of the

effect in percentage points is represented on the vertical axis. The horizontal axis shows the horizon in months.
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Figure 8: The impulse response functions of the model with time-varying parameters in the
equation for the BAA spread and innovations with heavy tails in February 2023.

Impulses are shown in the column headers, response variables are given by the rows. The size of the impulse is one standard

deviation. The red solid line gives the point estimate and the coloured bands show the 80% credible interval. The size of the

effect in percentage points is represented on the vertical axis. The horizontal axis shows the horizon in months.
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Figure 9: Point forecasts of the model with constant parameters and Gaussian innovations.

The red line represents the realisations of the respective variable and the black lines are its forecasts (up to a two-years horizon),

made at different points in time. The model used is the one with constant parameters and Gaussian innovations.
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Figure 10: Point forecasts of the model with time-varying parameters in the equation for the
BAA-spread and heavy-tailed innovations.

The red line represents the realisations of the respective variable and the black lines are its forecasts (up to a two-years horizon),

made at different points in time. The model used is the one with time-varying parameters in the equation for the BAA-spread

and heavy-tailed innovations.
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Figure 11: Cumulative difference in log predictive score between the model with time-varying
parameters in the equation for the BAA-spread (and innovations with heavy tails) and the
constant parameter model (with Gaussian innovations).

Positive values (red) means that the model with time-varying parameters in the equation for the BAA spread predicts better

and negative values (blue) means that the constant parameter model does better. The forecast horizon is three months. In

both cases, Gaussian innovations are used. The dashed lines illustrate the scale values of the original variables. See Geweke

and Amisano (2010) for details.
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Figure 12: Cumulative difference in log predictive score between the models with time-
varying parameter in the equation for the BAA-spread, using heavy-tailed and Gaussian
innovations.

Positive values (red) means that the model with heavy-tailed innovations predicts better and negative values (blue) means

that the Gaussian model does better. The forecast horizon is three months. The dashed lines illustrate the scale values of the

original variables. See Geweke and Amisano (2010) for details.
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A Bayesian inference

This section describes the MCMC inference scheme for the parameters in the hybrid TVP-

VAR models in detail.

We begin with the hybrid TVP-VAR model as a seemingly unrelated regression,

Yi = Xiθi,0 + Ziθ̃i + W
1/2
i H

1/2
i εi,

Tiθ̃i = η̃i,
(1)

where Yi = (yi,1, . . . , yi,T )
′
, Xi = (x

′
i,1, . . . ,x

′
i,T )

′
, Zi = Mi diag(xi,1Σ

1/2
θ,i , . . . ,xi,TΣ

1/2
θ,i ), θ̃i =

(θ̃
′

i,1, . . . θ̃
′

i,T )
′
, Wi = diag(wi) = diag(wi,1, . . . , wi,T ), Hi = diag(exp(hi)) = diag(exp(hi,1), . . . , exp(hi,T )),

εi = (εi,1, . . . εi,T )
′
, η̃i = (η̃

′

i,1, . . . η̃
′

i,T )
′
, Ti =


Iki 0 · · · 0

−Iki Iki
. . . 0

...
. . . . . .

...

0 · · · −Iki Iki

.

Given the latent variables w1:k,1:T , the conditional posterior distributions of the remaining

parameters in the TVP VAR model with OT-SV innovations are similar to those in the VAR

model with Gaussian-SV innovations. The Bayesian inference using a Gibbs sampler is

1



extended to make inferences on model parameters. To simplify the notation, let Ψ be a set

of conditional parameters except the one that we sample from.

1. We sample (θ̃i,θi,0,Σθ,i) for i = 1, . . . , k using the ASIS by proposed Yu and Meng

(2011),

(a) Draw π(θ̃i|Ψ) in the NCP setting by writing Equation 1 as a multivariate linear

regression,

Yi −Xiθi,0 = Ziθ̃i + W
1/2
i H

1/2
i εi,

Tiθ̃i = η̃i.

As the prior distribution is θ̃i ∼ N (0, (T
′
iTi)

−1), the conditional posterior distri-

bution of θ̃i is a conjugate Gaussian distribution θ̃i ∼ N (θ̂i,K
−1
θ,i ) for i = 1, . . . k,

where
θ̂i = K−1θ,idθ,i,

Kθ,i = T
′

iTi + Z
′

iW
−1
i H−1i Zi,

dθ,i = Z
′

iW
−1
i H−1i (Yi −Xiθi,0).

(2)

(b) Draw π(θi,0,Σθ,i|Ψ) in the NCP setting by writing Equation 1 as a multivariate

linear regression,

Yi = Xiθi,0 +Mi

(
Xi � θ̃i

)
σθ,i + W

1/2
i H

1/2
i εi

=
(
Xi Mi

(
Xi � θ̃i

))(θi,0
σθ,i

)
+ W

1/2
i H

1/2
i εi,

Yi = X̃ibi + W
1/2
i H

1/2
i εi,

where X̃i =
(
Xi Mi

(
Xi � θ̃i

))
and bi =

(
θi,0

σθ,i

)
. As the θi,0 follows a Min-

nesota prior and ±
√
σ2
θ,1:k ∼ N (0,Vθ), bi ∼ N (bi0,Vbi,0

). The conditional

posterior distribution of bi is a conjugate Gaussian distribution

π(bi|Ψ) ∼ N(b∗i ,V
∗
bi

),

where

V∗−1bi
=V−1bi,0

+
T∑
t=1

X̃
′

iW
−1
i H−1i X̃i,

b∗i =V∗bi

[
V−1bi,0

bi0 +
T∑
t=1

X̃
′

iW
−1
i H−1i Yi

]
.
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(c) Move θi = θi,0 +MiΣ
1/2
θ,i θ̃i in the CP setting.

(d) Draw π(θi,0,Σθ,i|Ψ) in the CP setting.

The conditional posterior π(σ2
θ,i|Ψ) is generalized inverse Gaussian distribution

(GIG) as,

π(σ2
θ,i|Ψ) ∝

(
σ2
θ,i

)−T
2 exp

−
T∑
t=1

(θi,t − θi,t−1)2

2σ2
θ,i

(σ2
θ,i

)− 1
2 exp

(
−
σ2
θ,i

2Vθ

)
.

We sample σ2
θ,i ∼ GIG(λ, ψ, χ) where λ = −0.5(T − 1), χ =

T∑
t=1

(θi,t − θi,t−1)
2

and ψ = 1/Vθ, see Hörmann and Leydold (2014) for more details. And we sample

π(θi,0|Ψ) ∼ N(θ∗i,0,V
∗
θi,0

) where

V∗−1θi,0
=V−1θi,0 + Σ−1θ,i ,

θ∗i,0 =V∗θi,0

[
V−1θi,0θi,0 + Σ−1θ,iθi,1

]
.

(e) Move θ̃i =
(
MiΣ

1/2
θ,i

)−1
(θi − θi,0)/ in the NCP setting.

2. We sample π(h1:k,Σh,1:k|Ψ) using the ASIS proposed by Kastner and Frühwirth-

Schnatter (2014). Let ũi,t = w
−1/2
i,t (yi,t − xi,tθi,0 + Mixi,tΣ

1/2
θ,i θ̃i,t), for each series

i = 1, . . . , k, we have that log ũ2it = hit + log ε2t . We sample π(hi|Ψ) in the CP-NCP

setting.

(a) Draw π(h1:k|Ψ) in the CP setting (Kastner and Frühwirth-Schnatter, 2014) and

draw h0 ∼ N (ĥ0,K
−1
h0

) in CP setting where

Kh0 = V−1h0 + Σ−1h ,

ĥ0 = K−1h0 (V−1h0 ah0 + Σ−1h h1).

(b) Draw π(Σh,i|Ψ) for i = 1, . . . , k using a GIG(λ, ψ, χ) where λ = −0.5(T − 1),

χ =
T∑
t=1

(hi,t − hi,t−1)2 and ψ = 1/Vh, see Hörmann and Leydold (2014), as the

3



conditional posterior π(σ2
h,i|Ψ) is

π(σ2
h,i|Ψ) ∝

(
σ2
h,i

)−T
2 exp

−
T∑
t=1

(hi,t − hi,t−1)2

2σ2
h,i

(σ2
h,i

)− 1
2 exp

(
−
σ2
h,i

2Vh

)
.

(c) Move h̃i = hi/σh,i for i = 1, . . . , k.

(d) Draw π(Σh,1:k|Ψ) in the NCP setting (Kastner and Frühwirth-Schnatter, 2014).

(e) Move hi = h̃iσh,i for i = 1, . . . , k.

3. We sample wi,t ∼ IG
(
νi+1
2
, νi

2
+

(yi,t−xi,tθi,0−Mixi,tθ̃i,t)
2

2 exp(hi,t)

)
for i = 1, . . . , k, t = 1, . . . , T

following Geweke (1993).

4. We sample π(νi|Ψ) ∝ G(νi; 2, 0.1)
T∏
t=1

IG
(
wt;

νi
2
,
νi
2

)
for i = 1, . . . , k, using an adaptive

random walk Metropolis-Hastings algorithm to accept/reject the draw ν
(∗)
i = νi +

ηi exp(ci), where ηi ∼ N (0, 1) and the adaptive variance ci is adjusted automatically

such that the acceptance rate is around 0.25 (Roberts and Rosenthal, 2009).
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B Marginal likelihood: The inner importance sampling

Recall that the objective is to estimate the integrated likelihood p(y1:T |Θ1), that is, we

need to integrate out Θ2 = {h1:k,w1:k} from p(y1:T |Θ1,Θ2). This is done using an inner

importance sampling loop based on a sparse matrix representation as in Chan and Eisenstat

(2018). Write the integrated likelihood as

p(y1:T |Θ1) =
k∏
i=1

p(Yi|Θ1),

=
k∏
i=1

[∫
p(Yi|Θ2,Θ1)p(Θ2|Θ1)dΘ2

]
,

=
k∏
i=1

[∫
p(Yi|hi,wi,Θ1)p(hi,wi|Θ1)

f(hi,wi)
f(hi,wi)dhidwi

]
.

(3)

The ideal zero-variance importance sampling density is

f(hi,wi) = p(hi,wi|y1:T ,Θ1), or

f(wi|hi)f(hi) =
p(hi,wi, θ̃i|Yi,Θ1)

p(θ̃i|Yi,hi,wi,Θ1)
.

(4)

However, the zero-variance importance density is not available due to the unknown nor-

malizing constant. We approximate p(hi,wi|Yi,Θ1) using a Gaussian density for the log

volatility and Inverse Gamma density for the mixing variables, hi ∼ N (ĥi,K
−1
hi ) and wit|hit ∼

IG(ait, bit). For the proposal density f(hi), we find ĥi as the mode of log p(hi,wi|Yi,Θ1)

using an expectation maximization (EM) algorithm, and Khi as the negative Hessian of this

log density evaluated at the mode. In the E-step, let lwi = log(wi), we compute

Q(hi, lwi|h̃i, l̃wi) = Eθ̃i|h̃i,l̃wi

(
log p(hi, lwi, θ̃i|Yi,Θ1)

)
=const− 1

′

T

νi
2

lwi − 1
′

T

νi
2
e−lwi

− 1

2
(hi −αhi)

′
T

′

hiΣ
−1
hi Thi(hi −αhi)−

1

2
1

′

Thi −
1

2
1

′

T lwi

− 1

2
tr
(
diag(e−hie−lwi)(ZiK

−1
θ,iZ

′

i + (Yi −Xiθ0,i − Ziθ̂i)(Yi −Xiθ0,i − Ziθ̂i)
′
)
)

where θ̂i = (T
′
iTi+Z

′
iW

−1
i H−1i Zi)

−1(Z
′
iW

−1
i H−1i (Yi−Xiθi,0)) and K−1θ,i = (T

′
iTi+Z

′
iW

−1
i H−1i Zi)

−1

are the mean and variance of the conditional posterior distribution of θ̃i given (h̃i, l̃wi);
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for details, see the Online Appendix; Thi =


1 0 · · · 0

−1 1
. . . 0

...
. . . . . .

...

0 · · · −1 1

, αhi = T−1hi α̃hi, α̃hi =

(ah0,i, 0, . . . , 0)
′

and Σhi = diag(σ2
h,i + Vh0,i, σ

2
h,i, . . . , σ

2
h,i).

In the M-step, we maximize the function Q(hi, lwi|h̃i, l̃wi) with respect to (hi, lwi) using

the Newton–Raphson method. Chan and Eisenstat (2018) derive the gradient and Hessian

for hi; the gradient of lwi can also be obtained similarly,

ghi
=
∂Q(hi, lwi|h̃i, l̃wi)

∂hi
= −T

′

hiΣ
−1
hi Thi(hi −αhi)−

1

2
(1T − e−hie−lwi � ẑi),

gwi
=
∂Q(hi, lwi|h̃i, l̃wi)

∂lwi

= −νi
2

1T +
νi
2
e−lwi − 1

2
(1T − e−hie−lwi � ẑi),

where ẑi is the diagonal of ZiK
−1
θ,iZ

′
i + (Yi−Xiθ0,i−Ziθ̂i)(Yi−Xiθ0,i−Ziθ̂i)

′
and � is the

component-wise vector multiplication. After obtaining the mode (ĥi, l̂wi) of p(hi,wi|Yi,Θ1),

the negative Hessian at the mode is calculated as,

Khi = −∂
2 log p(hi,wi|Yi,Θ1)

∂h2
i

∣∣∣∣∣
(ĥi,l̂wi)

= −

∂2Eθ̃i|h̃i,l̃wi

(
log p(hi,wi, θ̃i|Yi,Θ1)

)
∂h2

i

−
∂2Eθ̃i|h̃i,l̃wi

(
log p(θ̃i|Yi,Θ1,hi,wi)

)
∂h2

i

 ∣∣∣∣∣
(ĥi,l̂wi)

=

(
T

′

hiΣ
−1
hi Thi +

1

2
diag(e−ĥie−l̂wi � ẑi)

)
+

1

2
V

′

i � (IT −Vi) ,

where Vi = diag(e−ĥie−l̂wi)ZiK
−1
θ,iZ

′
i; see the derivation in Chan and Eisenstat (2018). Con-

ditional from a sample hi ∼ N (ĥi,K
−1
hi ), the proposal distribution wi would be

log f(wi|hi) ∝Eθ̃i|hi,l̃wi

(
log p(wi, θ̃i|Yi,Θ1,hi)

)
,

∝− 1
′

T

(
νi + 1

2
+ 1

)
lwi − 1

′

T

νi
2
e−lwi

− 1

2
tr
(
diag(e−hie−lwi)Eθ̃i|hi,l̃wi

(
ZiK

−1
θ,iZ

′

i + (Yi −Xiθ0,i − Ziθ̂i)(Yi −Xiθ0,i − Ziθ̂i)
′
))

.

The calculation of log f(wi|hi) requires to carry out another run of the EM algorithm for the

expectation Eθ̃i|hi,l̃wi

(
ZiK

−1
θ,iZ

′
i + (Yi −Xiθ0,i − Ziθ̂i)(Yi −Xiθ0,i − Ziθ̂i)

′
)

and it is quite
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computationally expensive. Therefore, we propose a simplification of the calculation that

log f(wi|hi) ∝Eθ̃i|hi,l̂wi

(
log p(wi, θ̃i|Yi,Θ1,hi)

)
∝− 1

′

T

(
νi + 1

2
+ 1

)
lwi − 1

′

T

(
νi
2

+
1

2
e−hi � z̃i

)
e−lwi ,

with z̃i is ẑi evaluated at hi, hence wit|hit ∼ IG(ait, bit) where ait = νi+1
2

and bit =(
νi
2

+ 1
2
e−hit z̃it

)
.
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