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Abstract In the paper we consider the optimal portfolio choice problem under pa-
rameter uncertainty when the covariance matrix of asset returns is singular. Very
useful stochastic representations are deduced for the characteristics of the expected
utility optimal portfolio. Using these stochastic representations, we derive the mo-
ments of higher order of the estimated expected return and the estimated variance
of the expected utility optimal portfolio. Another line of applications leads to their
asymptotic distributions obtained in the high-dimensional setting. Via a simulation
study, it is shown that the derived high-dimensional asymptotic distributions provide
good approximations of the exact ones even for moderate sample sizes.

1 Introduction

Mean-variance analysis of Harry Markowitz [34] plays important role in portfolio
analysis. It is widely used by practitioners and it is also a hot topic by researchers of
financial sector.
The original idea of Markowitz [34] was to select a portfolio which minimizes

the variance for a given level of the expected return. Recently, it was shown that
different optimization problems lead to the same set of optimal portfolios (see, [20]).

Taras Bodnar
Department of Mathematics, Stockholm University, Stockholm, Sweden, e-mail:
taras.bodnar@math.su.se

Stepan Mazur
Unit of Statistics, School of Business, Örebro University, Örebro, Sweden,
Department of Economics and Statistics, School of Business and Economics, Linnaeus University,
Sweden, e-mail: Stepan.Mazur@oru.se

Hoang Nguyen
Department of Management and Engineering, Linköping University, Linköping, Sweden, e-mail:
hoang.nguyen@liu.se

1



2 Taras Bodnar and Stepan Mazur and Hoang Nguyen

In particular, the set of mean-variance optimal portfolios, the so-called efficient
frontier, can also be obtained by an investor who maximizes the exponential utility
function under the assumption that the vector of asset returns follows a multivariate
normal distribution. In this case, the optimization problem is given by

max
w:w⊤1𝑘=1

[
w⊤𝝁 − 𝛼

2
w⊤𝚺w

]
, (1)

where 𝝁 denotes the vector of the 𝑘-dimensional expected asset returns, 𝚺 is the
𝑘 × 𝑘 covariance matrix, and 𝛼 is the risk-aversion coefficient which describes the
investor attitude towards risk. Changing the risk aversion coefficient from zero to
infinity, we get the same set of optimal portfolios as the one obtained byMarkowitz’s
mean-variance optimization problem.
The solution of (1) is given by

w𝐸𝑈 =
𝚺−11𝑘

1⊤
𝑘
𝚺−11𝑘

+ 𝛼−1R𝝁, (2)

where

R = 𝚺−1 −
𝚺−11𝑘1⊤

𝑘
𝚺−1

1⊤
𝑘
𝚺−11𝑘

.

The portfolio with weights (2) is known in financial literature as the expected utility
(EU) optimal portfolio (see, e.g., [31], [36], [19]).
In practice, however, the weights of the EU optimal portfolio (2) cannot be directly

implemented, since the formula of the weights depends on the unknown quantities
𝝁 and 𝚺. As such, the investor should use the historical data of asset returns to
estimate 𝝁 and 𝚺 before the optimal portfolio is constructed. The most commonly
used estimators for the mean vector of the asset returns and for the covariance matrix
are their sample counterparts expressed as

x̄ =
1
𝑛

𝑛∑︁
𝑖=1

x𝑖 and S =
1

𝑛 − 1

𝑛∑︁
𝑖=1

(x𝑖 − x̄) (x𝑖 − x̄)⊤, (3)

where x1, ..., x𝑛 is the sample of the asset returns. Then, the weights of the EU
optimal portfolio are estimated by

ŵ𝐸𝑈 =
S−11𝑘

1⊤
𝑘
S−11𝑘

+ 𝛼−1R̂x̄ with R̂ = S−1 −
S−11𝑘1⊤

𝑘
S−1

1⊤
𝑘
S−11𝑘

. (4)

Similarly,

𝑅𝐸𝑈 =
x̄⊤S−11𝑘

1⊤
𝑘
S−11𝑘

+ 𝛼−1x̄⊤R̂x̄ and 𝑉𝐸𝑈 =
1

1⊤
𝑘
S−11𝑘

+ 𝛼−2x̄⊤R̂x̄ (5)

are the sample estimators of the expected return and the variance of the EU optimal
portfolio expressed as
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𝑅𝐸𝑈 =
𝝁⊤𝚺−11𝑘

1⊤
𝑘
𝚺−11𝑘

+ 𝛼−1𝝁⊤R𝝁 and 𝑉𝐸𝑈 =
1

1⊤
𝑘
𝚺−11𝑘

+ 𝛼−2𝝁⊤R𝝁. (6)

The first twomoments of the sample estimator of the EUportfolioweights together
with their asymptotic distribution were obtained in [36], while the exact distribution
of (4) was derived in [23]. Recently, the asymptotic distribution of the estimated
weights as well as their consistent estimator in the high-dimensional setting were
deduced in [11]. The exact distributions of the sample estimator for the expected
return and the variance of the EUportfoliowere provided in [22]. Finally, a shrinkage-
based estimator and test theory for the EU portfolio weights were developed in [19]
and [10], who extended the shrinkage-based approach applied to other optimal
portfolio weights in [27], [26] and [21]. For the practical implementation of the
derived estimators the investor can use the R package HDShOP ([9]), while [8]
presented the detailed review of the estimation procedures.
Another line of research related to the estimation of optimal portfolio weights and

characteristics leads to the Bayesian statistics. The research in this direction started
with the papers of [43], [2] and [33]. Both informative and noninformative priors
have been used in the literature. While the hyperparameter prior approach closely
related to the Bayes–Stein shrinkage prior was considered in [32], the economical
motivation for the usage of an informative prior was provided in [7]. Other informa-
tive priors were considered in [38], [39], [41], among other. Noninformative priors
were employed in the papers of [14] and [4]. Finally, the Bayesian estimator of the
efficient frontier was considered in the papers of [3] and [5].
We contribute to the existing literature by deriving the properties of the estimated

EU optimal portfolio when the covariance matrix is singular. While the previous
studies assume that the covariance matrix is positive definite, recently several papers
deal with the singular case (see, e.g., [37], [28], [29]). The estimated global mini-
mum variance portfolio with a singular covariance matrix was considered in [16],
while the results for the tangency portfolio were derived in [17]. Finally, several
important properties of singular Wishart distribution were derived in [13] which
were implemented in portfolio theory by [15].
The rest of the paper is organised as follows. In the next section, the main findings

are presented. In Section 2.1 the results for finite-sample case are provided, while
the asymptotic distributions of the estimated EU optimal portfolio characteristics,
obtained in the high-dimensional setting, are given in Section 2.2. The quality of
the asymptotic approximation is investigated via simulations in Section 3. The final
remarks are present in Section 4.

2 Sample EU Optimal Portfolio for Singular Covariance matrix

In the following, it is assumed that the population covariance matrix 𝚺 is singular
with 𝑟𝑎𝑛𝑘 (𝚺) = 𝑟 < 𝑛 ≤ 𝑘 , where 𝑛 is the sample size. Since 𝚺 is not invertible,
the formulas for the EU weights and their characteristics (2) and (6) cannot be used
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unless the ordinary inverse is replace by a generalized inverse, for example by the
Moore-Penrose inverse 𝚺+.
The Moore-Penrose inverse of a matrix A is defined as the matrix A+ which

fulfills the following four conditions

(i) AA+A = A,
(ii) A+AA+ = A+,
(iii) (A+A)⊤ = A+A,
(iv) (AA+)⊤ = AA+.

It is important to note that the Moore-Penrose inverse is uniquely defined for every
matrix A.
Replacing the ordinary inverse of 𝚺 by its Moore-Penrose inverse we get the

weights of the EU portfolio expressed as

w+
𝐸𝑈 =

𝚺+1𝑘

1⊤
𝑘
𝚺+1𝑘

+ 𝛼−1R+𝝁, with R+ = 𝚺+ −
𝚺+1𝑘1⊤

𝑘
𝚺+

1⊤
𝑘
𝚺+1𝑘

(7)

and its expected return and variance given by

𝑅+
𝐸𝑈 =

𝝁⊤𝚺+1𝑘

1⊤
𝑘
𝚺+1𝑘

+ 𝛼−1𝝁⊤R+𝝁 and 𝑉+
𝐸𝑈 =

1
1⊤
𝑘
𝚺+1𝑘

+ 𝛼−2𝝁⊤R+𝝁, (8)

respectively.
Similarly, the application of the Moore-Penrose inverse of the sample covariance

matrix S+ leads to the estimated portfolio weights for a singular covariance matrix
expressed as

ŵ+
𝐸𝑈 =

S+1𝑘

1⊤
𝑘
S+1𝑘

+ 𝛼−1R̂+x̄ with R̂+ = S+ −
S+1𝑘1⊤

𝑘
S+

1⊤
𝑘
S+1𝑘

. (9)

The sample estimators for the expected return and the variance of the EU optimal
portfolio are then given by

𝑅+
𝐸𝑈 =

x̄⊤S+1𝑘

1⊤
𝑘
S+1𝑘

+ 𝛼−1x̄⊤R̂+x̄ and 𝑉+
𝐸𝑈 =

1
1⊤
𝑘
S+1𝑘

+ 𝛼−2x̄⊤R̂+x̄. (10)

2.1 Results for Finite Sample

Let

𝑅+
𝐺𝑀𝑉 =

𝝁⊤𝚺+1𝑘

1⊤
𝑘
𝚺+1𝑘

and 𝑉+
𝐺𝑀𝑉 =

1
1⊤
𝑘
𝚺+1𝑘

be the expected return and the variance of the global minimum variance portfolio
when the covariance matrix 𝚺 is singular and let
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𝑠+ = 𝝁⊤R+𝝁

be the slope parameter of the efficient frontier.
Let the symbol N𝑚 (a,B) denote the 𝑚-dimensional normal distribution with

mean vector a and covariance matrix B, the symbolW𝑚 (𝑑,B) corresponds to the
𝑚-dimensionalWishart distributionwith 𝑑 degrees of freedomand covariancematrix
B, the symbol 𝜒2

𝑚 stand for the 𝜒2-distribution with 𝑚 degrees of freedom and the
symbol F𝑚1 ,𝑚2 ,𝑐2 denote the noncentral 𝐹-distribution with 𝑚1 and 𝑚2 degrees of
freedom and noncentrality parameter 𝑐2. The definition and properties of theWishart
distribution can be found in [35], while the singular Wishart distribution is present
when 𝑑 < 𝑚 and its definition and properties are given in [12], [15], [18], [40]. In
Theorem 1 we derive very useful stochastic representations of 𝑅+

𝐸𝑈
and 𝑉+

𝐸𝑈
.

Theorem 1 Let x1, . . . , x𝑛 be i.i.d. random vectors with x𝑖 ∼ N𝑘 (𝝁,𝚺), 𝑘 ≥ 𝑛 and
𝑟𝑎𝑛𝑘 (𝚺) = 𝑟 < 𝑛. Then, stochastic representations of 𝑅+

𝐸𝑈
and 𝑉+

𝐸𝑈
are given by

𝑅+
𝐸𝑈

𝑑
= 𝑅+

𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1)
𝑛(𝑛 − 𝑟 + 1) 𝜉 +

√︄
1
𝑛

(
1 + 𝑟 − 1

𝑛 − 𝑟 + 1
𝜉

)√︃
𝑉+
𝐺𝑀𝑉

𝑧0

and

𝑉+
𝐸𝑈

𝑑
=
𝑉+
𝐺𝑀𝑉

𝑛 − 1
𝜂 + 𝛼−2 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉,

where 𝜉 ∼ F𝑟−1,𝑛−𝑟+1,𝑛𝑠+ , 𝜂 ∼ 𝜒2
𝑛−𝑟 , and 𝑧0 ∼ N(0, 1). Moreover, 𝜉, 𝜂, and 𝑧0 are

mutually independently distributed.

Proof of Theorem 1:We start by deriving a stochastic representation of 𝑅+
𝐸𝑈
. From

Theorem 4 (c) of [15] we know that x̄ and S are independently distributed. Then, it
holds that the distribution of 𝑅+

𝐸𝑈
|x̄ = x̄∗ is equal to the distribution of 𝑅∗

𝐸𝑈
defined

by

𝑅∗
𝐸𝑈 =

1⊤
𝑘
S+x̄∗

1⊤
𝑘
S+1𝑘

+ 𝛼−1x̄∗⊤R̂+x̄∗.

Let L⊤ = (x∗, 1𝑘) such that 𝑟𝑎𝑛𝑘 (L) = 2. Then, �̃� = L𝚺+L⊤ =
{
�̃�𝑖 𝑗

}
𝑖, 𝑗=1,2 with

�̃�11 = x̄∗⊤𝚺+x̄∗, �̃�12 = �̃�21 = x̄∗⊤𝚺+1𝑘 , and �̃�22 = 1⊤
𝑘
𝚺+1𝑘 . Similarly, let S̃ =

LS+L⊤ =
{
𝑠𝑖 𝑗

}
𝑖, 𝑗=1,2 with 𝑠11 = x̄∗⊤S+x̄∗, 𝑠12 = 𝑠21 = x̄∗⊤S+1𝑘 , and 𝑠22 = 1⊤

𝑘
S+1𝑘 .

Also, let V = �̃�−1 =
{
𝑣𝑖 𝑗

}
𝑖, 𝑗=1,2 and V̂ = S̃−1 =

{
�̂�𝑖 𝑗

}
𝑖, 𝑗=1,2. Then, the application

of Theorem 8.5.11 of [30] leads to

�̂�11 =

(
x̄∗⊤S+x̄∗ − (x̄∗⊤S+1𝑘)2

1⊤
𝑘
S+1𝑘

)−1

= (x̄∗⊤R̂+x̄∗)−1,

�̂�12 = − x̄∗⊤S+1𝑘

1⊤
𝑘
S+1𝑘 x̄∗⊤R̂+x̄∗

.
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From Theorem 4 (a) of [15] we have that (𝑛−1)S ∼ W𝑘 (𝑛−1,𝚺). Then applying
Theorem 1 of [15] it holds that

(𝑛 − 1)V̂ ∼ W2 (𝑛 − 𝑟 + 1,V).

From Theorem 3.2.10 of [35] we obtain that �̂�22 − �̂�2
12 �̂�

−1
11 =

(
1⊤
𝑘
S+1𝑘

)−1 is indepen-
dent of �̂�11 = (x̄∗⊤R̂+x̄∗)−1. Consequently, 1⊤

𝑘
S+1𝑘 and x̄∗⊤R̂+x̄∗ are independently

distributed. Moreover, from Corollary 1 of [15] and Theorem 3.2.10 of [35] we get
that

(𝑛 − 1)
1⊤
𝑘
𝚺+1𝑘

1⊤
𝑘
S+1𝑘

∼ 𝜒2
𝑛−𝑟 and (𝑛 − 1) x̄∗⊤R+x̄∗

x̄∗⊤R̂+x̄∗
∼ 𝜒2

𝑛−𝑟+1. (11)

The application of Theorem 3.2.10 by [35] leads to

x̄∗⊤S+1𝑘

1⊤
𝑘
S+1𝑘

𝑛 − 1
x∗⊤R̂+x̄∗

���� 𝑛 − 1
x̄∗⊤R̂+x̄∗

= 𝑢 ∼ N
(
x̄∗⊤𝚺+1𝑘

1⊤
𝑘
𝚺+1𝑘

𝑢,
1

1⊤
𝑘
𝚺+1𝑘

𝑢

)
.

Then,

x̄∗⊤R̂+x̄∗

𝑛 − 1

(
x̄∗⊤S+1𝑘

1⊤
𝑘
S+1𝑘

𝑛 − 1
x̄∗⊤R̂+x̄∗

+ (𝑛 − 1)𝛼−1
)����� 𝑛 − 1

x̄∗⊤R̂+x̄∗
= 𝑢

∼ N
(
x̄∗⊤𝚺+1𝑘

1⊤
𝑘
𝚺+1𝑘

+ 𝑛 − 1
𝛼𝑢

,
1

1⊤
𝑘
𝚺+1𝑘

1
𝑢

)
.

Using Theorem 4 (b) of [15] and following the proof of Theorem 3 of [17], we get

x̄⊤𝚺+1𝑘 ∼ N
(
𝝁⊤𝚺+1𝑘 ,

1
𝑛

1⊤𝑘𝚺
+1𝑘

)
, (12)

𝑛(𝑛 − 𝑟 + 1)
(𝑛 − 1) (𝑟 − 1) x̄⊤R̂+x̄ ∼ F𝑟−1,𝑛−𝑟+1,𝑛𝑠+ (13)

and, moreover, x̄⊤𝚺+1𝑘 is independent of x̄⊤R̂+x̄. Thus, summarising the previous
findings we get a stochastic representation of 𝑅+

𝐸𝑈
as given in the statement of the

theorem.
Next, we proceed with the derivation of a stochastic representation for 𝑉+

𝐸𝑈
. Let

us recall that 1⊤
𝑘
S+1𝑘 is independent of x̄∗⊤R̂+x̄∗. Therefore, since 1⊤

𝑘
S+1𝑘 does

not depend on x̄, we also get that 1⊤
𝑘
S+1𝑘 and x̄⊤R̂+x̄ are independent. Using this

fact together with (11), we arrive at a stochastic representation of 𝑉+
𝐸𝑈
given in the

statement of the theorem. ■

The results proved in Theorem 1 are fundamental and fully describe the stochastic
behaviour of the estimated expected return and the estimated variance of the EU
optimal portfolio when the covariance matrix is singular and the asset returns are
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independent and identically normally distributed. Moreover, these findings possess a
number of important applications, which will be present in this section. In particular,
they can be used to derive the moments of higher order of 𝑅+

𝐸𝑈
and𝑉+

𝐸𝑈
. We present

the corresponding findings in Theorem 2.
In the formulation of the statement of Theorem 2, the confluent hypergeometric

function is used which is defined by (see, Chapter 4 in [1].)

1𝐹1 (𝑎; 𝑏; 𝑥) = Γ(𝑏)
Γ(𝑎)

∞∑︁
𝑖=0

Γ(𝑎 + 𝑖)
Γ(𝑏 + 𝑖)

𝑥𝑖

𝑖!
. (14)

Theorem 2 Let x1, . . . , x𝑛 be i.i.d. random vectors with x𝑖 ∼ N𝑘 (𝝁,𝚺), 𝑘 ≥ 𝑛 and
𝑟𝑎𝑛𝑘 (𝚺) = 𝑟 < 𝑛. Then the 𝑝th order moments of 𝑅+

𝐸𝑈
and 𝑉+

𝐸𝑈
are given by

𝜇
(𝑝)
𝑅+
𝐸𝑈

:= E
[
(𝑅+

𝐸𝑈) 𝑝
]
= 𝑒−

𝑛𝑠+
2

⌊𝑝/2⌋∑︁
𝑗=0

(
𝑉+
𝐺𝑀𝑉

𝑛

) 𝑗 (2 𝑗)!
2 𝑗 𝑗!

(
𝑝

2 𝑗

)
×

𝑝−2 𝑗∑︁
𝑗1=0

𝑗∑︁
𝑗2=0

(𝑅+
𝐺𝑀𝑉 )

𝑝−2 𝑗− 𝑗1

(
𝑛 − 1
𝛼𝑛

) 𝑗1 (𝑝 − 2 𝑗
𝑗1

) (
𝑗

𝑗2

)
×

Γ

(
𝑛−𝑟+1

2 − 𝑗1 − 𝑗2

)
Γ

(
𝑛−𝑟+1

2

) Γ

(
𝑟−1

2 + 𝑗1 + 𝑗2

)
Γ

(
𝑟−1

2

) 1𝐹1

(
𝑟 − 1

2
+ 𝑗1 + 𝑗2;

𝑟 − 1
2

;
𝑛𝑠+

2

)
and

𝜇
(𝑝)
𝑉+
𝐸𝑈

:= E
[
(𝑉+

𝐸𝑈) 𝑝
]
=

𝑝∑︁
𝑖=0

(𝑉+
𝐺𝑀𝑉 )

𝑝−𝑖
(
𝑝

𝑖

)
(𝑛 − 1)2𝑖−𝑝

(
𝛼2𝑛

)−𝑖
× (𝑛 − 𝑟) (𝑛 − 𝑟 + 2) (𝑛 − 𝑟 + 4) . . . (𝑛 − 𝑟 + 2(𝑝 − 𝑖) − 2)

× 𝑒−
𝑛𝑠+

2

Γ

(
𝑛−𝑟+1

2 − 𝑖

)
Γ

(
𝑛−𝑟+1

2

) Γ

(
𝑟−1

2 + 𝑖

)
Γ

(
𝑟−1

2

) 1𝐹1

(
𝑟 − 1

2
+ 𝑖;

𝑟 − 1
2

;
𝑛𝑠+

2

)
.

Proof of Theorem 2: First, we derive the 𝑝th order moment of 𝑅+
𝐸𝑈
. For that, we

make use of the stochastic representation of 𝑅+
𝐸𝑈
which is obtained in Theorem 1

and it is given by

𝑅+
𝐸𝑈

𝑑
= 𝑅+

𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1)
𝑛(𝑛 − 𝑟 + 1) 𝜉 +

√︄
1
𝑛

(
1 + 𝑟 − 1

𝑛 − 𝑟 + 1
𝜉

)√︃
𝑉+
𝐺𝑀𝑉

𝑧0,

where 𝜉 ∼ F𝑟−1,𝑛−𝑟+1,𝑛𝑠+ and 𝑧0 ∼ N(0, 1). Moreover, 𝜉 and 𝑧0 are independent.
The application of the binomial formula (see, [6, p. 129]) leads to
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(𝜇+𝑅𝐸𝑈
) (𝑝) := E

[
(𝑅+

𝐸𝑈) 𝑝
]

= E

©«𝑅+
𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉 +

√︄
1
𝑛

(
1 + 𝑟 − 1

𝑛 − 𝑟 + 1
𝜉

)√︃
𝑉+
𝐺𝑀𝑉

𝑧0
ª®¬
𝑝

= E


𝑝∑︁
𝑖=0

(
𝑝

𝑖

) (
𝑅+
𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉

) 𝑝−𝑖 ©«
√︄

1
𝑛

(
1 + 𝑟 − 1

𝑛 − 𝑟 + 1
𝜉

)√︃
𝑉+
𝐺𝑀𝑉

𝑧0
ª®¬
𝑖

=

𝑝∑︁
𝑖=0

(
𝑉+
𝐺𝑀𝑉

𝑛

) 𝑖
2
(
𝑝

𝑖

)
E
[
𝑧𝑖0
]

× E
[(
𝑅+
𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉

) 𝑝−𝑖 (
1 + 𝑟 − 1

𝑛 − 𝑟 + 1
𝜉

) 𝑖/2
]
.

Using the fact that the odd moments of 𝑧0 are equal to zero and the even moments
are given by (see, Chapter 34.2 in [42])

E
[
𝑧2𝑙

0
]
=

(2𝑙)!
2𝑙𝑙!

for 𝑙 ≥ 1,

we get that

𝜇
(𝑝)
𝑅+
𝐸𝑈

=

⌊𝑝/2⌋∑︁
𝑗=0

(
𝑉+
𝐺𝑀𝑉

𝑛

) 𝑗 (2 𝑗)!
2 𝑗 𝑗!

(
𝑝

2 𝑗

)
(15)

× E
[(
𝑅+
𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉

) 𝑝−2 𝑗 (
1 + 𝑟 − 1

𝑛 − 𝑟 + 1
𝜉

) 𝑗 ]
.

Applying binomial formula again and the formula for higher order moments of
noncentral F -distribution (see, [42, Chapter 32.2]), we obtain that

E

[(
𝑅+
𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉

) 𝑝−2 𝑗 (
1 + 𝑟 − 1

𝑛 − 𝑟 + 1
𝜉

) 𝑗 ]
= E



𝑝−2 𝑗∑︁
𝑗1=0

(
𝛼−1 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1)

) 𝑗1
(𝑅+

𝐺𝑀𝑉 )
𝑝−2 𝑗− 𝑗1

(
𝑝 − 2 𝑗
𝑗1

)
𝜉 𝑗1


×


𝑗∑︁

𝑗2=0

(
𝑟 − 1

𝑛 − 𝑟 + 1

) 𝑗2 ( 𝑗
𝑗2

)
𝜉 𝑗2


 =

𝑝−2 𝑗∑︁
𝑗1=0

𝑗∑︁
𝑗2=0

𝑅
𝑝−2 𝑗− 𝑗1
𝐺𝑀𝑉

×
(
𝑛 − 1
𝛼𝑛

) 𝑗1 ( 𝑟 − 1
𝑛 − 𝑟 + 1

) 𝑗1+ 𝑗2 (𝑝 − 2 𝑗
𝑗1

) (
𝑗

𝑗2

)
E
[
𝜉 𝑗1+ 𝑗2 ]
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= 𝑒−
𝑛𝑠+

2

𝑝−2 𝑗∑︁
𝑗1=0

𝑗∑︁
𝑗2=0

(𝑅+
𝐺𝑀𝑉 )

𝑝−2 𝑗− 𝑗1

(
𝑛 − 1
𝛼𝑛

) 𝑗1 (𝑝 − 2 𝑗
𝑗1

) (
𝑗

𝑗2

) Γ (
𝑛−𝑟+1

2 − 𝑗1 − 𝑗2

)
Γ

(
𝑛−𝑟+1

2

)
×

∞∑︁
𝑚=0

1
𝑚!

(
𝑛𝑠+

2

)𝑚 Γ

(
𝑟−1

2 + 𝑚 + 𝑗1 + 𝑗2

)
Γ

(
𝑟−1

2 + 𝑚

) .

Substituting the last equality in (15) and applying the formula for the confluent
hypergeometric function (14), we get the expression of the higher order moments of
𝑅+
𝐸𝑈
given in the statement of the theorem.

Next, we derive the 𝑝th order moment of 𝑉+
𝐸𝑈
. From Theorem 1, a stochastic

representation of 𝑉+
𝐸𝑈
is expressed as

𝑉+
𝐸𝑈

𝑑
=
𝑉+
𝐺𝑀𝑉

𝑛 − 1
𝜂 + 𝛼−2 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉,

where 𝜉 ∼ F𝑟−1,𝑛−𝑟+1,𝑛𝑠+ and 𝜂 ∼ 𝜒2
𝑛−𝑟 . Moreover, 𝜉 and 𝜂 are independently

distributed. Applying binomial formula (see, [6, p. 129]) and the fact that 𝜉 and 𝜂
are independent, we obtain that

𝜇
(𝑝)
𝑉+
𝐸𝑈

:= E
[
(𝑉+

𝐸𝑈) 𝑝
]
= E

[(
𝑉+
𝐺𝑀𝑉

𝑛 − 1
𝜂 + 𝛼−2 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉

) 𝑝]
= E

[
𝑝∑︁
𝑖=0

(
𝑝

𝑖

) (
𝑉+
𝐺𝑀𝑉

𝑛 − 1
𝜂

) 𝑝−𝑖 (
𝛼−2 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉

) 𝑖]
=

𝑝∑︁
𝑖=0

(
𝑝

𝑖

) (
𝑉+
𝐺𝑀𝑉

𝑛 − 1

) 𝑝−𝑖 (
𝛼−2 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1)

) 𝑖
E
[
𝜂𝑝−𝑖] E [𝜉𝑖]

=

𝑝∑︁
𝑖=0

(
𝑝

𝑖

)
(𝑉+

𝐺𝑀𝑉 )
𝑝−𝑖 (𝑛 − 1)2𝑖−𝑝

(
𝛼−2 𝑟 − 1

𝑛(𝑛 − 𝑟 + 1)

) 𝑖
E
[
𝜂𝑝−𝑖] E [𝜉𝑖] .

From Chapters 8.2 and 32.2 in [42], we get

E
[
𝜂𝑝−𝑖] = (𝑛 − 𝑟) (𝑛 − 𝑟 + 2) (𝑛 − 𝑟 + 4) . . . (𝑛 − 𝑟 + 2(𝑝 − 𝑖) − 2),

E
[
𝜉𝑖
]
= 𝑒−

𝑛𝑠+
2

(
𝑛 − 𝑟 + 1
𝑟 − 1

) 𝑖 Γ (
𝑛−𝑟+1

2 − 𝑖

)
Γ

(
𝑛−𝑟+1

2

) ∞∑︁
𝑗=0

1
𝑗!

(
𝑛𝑠+

2

) 𝑗 Γ (
𝑟−1

2 + 𝑗 + 𝑖

)
Γ

(
𝑟−1

2 + 𝑗

) .

Summarising the above results we arrive at the expression for the 𝑝th order moment
of 𝑉+

𝐸𝑈
. ■

As special cases of Theorem 2, we obtain the expected values and the variances
of 𝑅+

𝐸𝑈
and 𝑉+

𝐸𝑈
in Corollary 1.
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Corollary 1 Let x1, . . . , x𝑛 be i.i.d. random vectors with x𝑖 ∼ N𝑘 (𝝁,𝚺), 𝑘 ≥ 𝑛 and
𝑟𝑎𝑛𝑘 (𝚺) = 𝑟 < 𝑛. Then the mean and variance of 𝑅𝐸𝑈 and 𝑉𝐸𝑈 are given by

E[𝑅+
𝐸𝑈] = 𝑅+

𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1 + 𝑛𝑠+)
𝑛(𝑛 − 𝑟 − 1) ,

E[𝑉+
𝐸𝑈] =

𝑛 − 𝑟

𝑛 − 1
𝑉+
𝐺𝑀𝑉 + 𝛼−2 (𝑛 − 1) (𝑟 − 1 + 𝑛𝑠+)

𝑛(𝑛 − 𝑟 − 1) ,

V𝑎𝑟 [𝑅+
𝐸𝑈] =

𝑛(𝑠 + 1) − 2
𝑛(𝑛 − 𝑟 − 1)𝑉

+
𝐺𝑀𝑉

+ 2𝛼−2 (𝑛 − 1)2

𝑛2
(𝑟 − 1 + 𝑛𝑠+)2 + (𝑟 − 1 + 2𝑛𝑠+) (𝑛 − 𝑟 − 1)

(𝑛 − 𝑟 − 1)2 (𝑛 − 𝑟 − 3)
,

V𝑎𝑟 [𝑉+
𝐸𝑈] =

2(𝑛 − 𝑟)
(𝑛 − 1)2 (𝑉

+
𝐺𝑀𝑉 )

2

+ 2𝛼−4 (𝑛 − 1)2

𝑛2
(𝑟 − 1 + 𝑛𝑠+)2 + (𝑟 − 1 + 2𝑛𝑠+) (𝑛 − 𝑟 − 1)

(𝑛 − 𝑟 − 1)2 (𝑛 − 𝑟 − 3)
.

Let 𝑓𝜒2
𝑚
(·) denote for the density of the 𝜒2-distribution with𝑚 degrees of freedom

and let 𝑓F
𝑚1 ,𝑚2 ,𝑐2 (·) be the density of the noncentral 𝐹-distribution with 𝑚1 and 𝑚2

degrees of freedom and noncentrality parameter 𝑐2. Another application of the results
derived in Theorem 1 leads to the formulas of the exact densities of 𝑅+

𝐸𝑈
and 𝑉+

𝐸𝑈

presented in Theorem 3.

Theorem 3 Let x1, . . . , x𝑛 be i.i.d. random vectors with x𝑖 ∼ N𝑘 (𝝁,𝚺), 𝑘 ≥ 𝑛 and
𝑟𝑎𝑛𝑘 (𝚺) = 𝑟 < 𝑛. Then,

i) the density function of 𝑅+
𝐸𝑈

is given by

𝑓
𝑅+
𝐸𝑈

(𝑥) = 𝑒−
𝑛𝑠
2

√︂
𝑛

2𝜋𝑉+
𝐺𝑀𝑉

1

𝐵

(
𝑛−𝑟+1

2 , 𝑟−1
2

)
×
∫ 1

0
(1 − 𝑢) 𝑛−𝑟

2 𝑢
𝑟−3

2 1𝐹1

(
𝑛

2
;
𝑟 − 1

2
;
𝑛𝑠+

2
𝑢

)
× exp

{
−𝑛(1 − 𝑢)

2𝑉+
𝐺𝑀𝑉

(
𝑥 − 𝑅+

𝐺𝑀𝑉 − 𝛼−1 (𝑛 − 1)𝑢
𝑛(1 − 𝑢)

)2
}
𝑑𝑢;

ii) the density function of 𝑉+
𝐸𝑈

is given by

𝑓
𝑉+
𝐸𝑈

(𝑥) = 𝑛(𝑛 − 𝑟 + 1)
(𝑟 − 1)𝑉+

𝐺𝑀𝑉

∫ ∞

0
𝑓𝜒2

𝑛−𝑟

(
𝑛 − 1
𝑉+
𝐺𝑀𝑉

(𝑥 − 𝛼−2𝑢)
)

× 𝑓F𝑟−1,𝑛−𝑟+1,𝑛𝑠+

(
𝑛(𝑛 − 𝑟 + 1)
(𝑛 − 1) (𝑟 − 1) 𝑢

)
𝑑𝑢.
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2.2 Results under the High-dimensional Setting

The exact results derived in Theorem 1 are also very useful to study the behavior
of 𝑅+

𝐸𝑈
and 𝑉+

𝐸𝑈
in the large-dimensional setting. Since the population covariance

matrix 𝚺 is singular, we consider the stochastic behaviour of 𝑅+
𝐸𝑈
and 𝑉+

𝐸𝑈
for

𝑟/𝑛 → 𝑐 ∈ (0, 1) as 𝑛 → ∞. This appears to be a better asymptotic regime than
the one based on the ratio of 𝑘 over 𝑛 since the singular population covariance
matrix impacts the actual dimension of the data-generating process. Namely, the
density of x𝑡 is singular and it is nonsingular on a subspace of R𝑘 of dimension 𝑟
where 𝑟 = 𝑟𝑎𝑛𝑘 (𝚺). As such, the actual dimension of the data-generating model
for x𝑡 is 𝑟 , which motivates the asymptotic regime 𝑟/𝑛. To this end, we note that
the dimension of the data-generating 𝑘 could be very large and it can even be larger
than the sample size 𝑛 in our study. Furthermore, it has no impact on the considered
double-asymptotic regime, while the actual dimension of data-generating model 𝑟 is
used instead.
To specify the asymptotic behavior of 𝑅+

𝐸𝑈
and 𝑉+

𝐸𝑈
. We also need to impose a

condition on the model parameters 𝝁 and 𝚺. Namely, in the following, it is assumed
that

(A1) There exist constants 𝑚 and 𝑀 such that 0 < 𝑚 ≤ 1⊤
𝑘
𝚺+1𝑘 ≤ 𝑀 < ∞ and

0 < 𝑚 ≤ 𝝁⊤𝚺+𝝁 ≤ 𝑀 < ∞ uniformly on 𝑟 .

In Theorem 4 we provide the asymptotic behavior of the estimated expected return
and the estimated variance of the EU optimal portfolio.

Theorem 4 Let x1, . . . , x𝑛 be i.i.d. random vectors with x𝑖 ∼ N𝑘 (𝝁,𝚺), 𝑘 ≥ 𝑛 and
𝑟𝑎𝑛𝑘 (𝚺) = 𝑟 < 𝑛. Assume (A1). Then, it holds that

√
𝑛

(
𝑅+
𝐸𝑈 −

(
𝑅+
𝐺𝑀𝑉 + 𝛼−1 𝑐 + 𝑠+

1 − 𝑐

))
→ N(0, 𝜎2

𝑅+
𝐸𝑈

)

and

√
𝑛

(
𝑉+
𝐸𝑈 −

(
(1 − 𝑐)𝑉+

𝐺𝑀𝑉 + 𝛼−2 𝑐 + 𝑠+

1 − 𝑐

))
→ N(0, 𝜎2

𝑉+
𝐸𝑈

)

for 𝑐𝑛 := 𝑟/𝑛 → 𝑐 ∈ (0, 1) as 𝑛 → ∞, where

𝜎2
𝑅+
𝐸𝑈

=
1 + 𝑠+

1 − 𝑐
𝑉+
𝐺𝑀𝑉 + 2𝛼−2

(1 − 𝑐)3

[
𝑐 + 𝑠+ (2 + 𝑠+)

]
and

𝜎2
𝑉+
𝐸𝑈

= 2(1 − 𝑐) (𝑉+
𝐺𝑀𝑉 )

2 + 2𝛼−2

(1 − 𝑐)3

[
𝑐 + 𝑠+ (2 + 𝑠+)

]
.

Proof of Theorem 4: From Lemma 3 in [24], we obtain that
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√
𝑛
©«©«

𝜉

𝜂/(𝑛 − 𝑟)
𝑧0/

√
𝑛

ª®¬ − ©«
1 + 𝑠+/𝑐

1
0

ª®¬ª®¬ → N ©«0, ©«
𝜎2
𝜉

0 0
0 2/(1 − 𝑐) 0
0 0 1

ª®¬ª®¬
for 𝑟/𝑛 → 𝑐 ∈ (0, 1) as 𝑛 → ∞ with

𝜎2
𝜉 =

2
𝑐

(
1 + 2

𝑠+

𝑐

)
+ 2

1 − 𝑐

(
1 + 𝑠+

𝑐

)2
.

Therefore, it holds that

√
𝑛
©«©«
(𝑟 − 1)𝜉/(𝑛 − 𝑟 + 1)

𝜂/(𝑛 − 1)
𝑧0/

√
𝑛

ª®¬ − ©«
(𝑐 + 𝑠+)/(1 − 𝑐)

1 − 𝑐

0

ª®¬ª®¬
→ N ©«0, ©«

𝑐2𝜎2
𝜉
/(1 − 𝑐)2 0 0

0 2(1 − 𝑐) 0
0 0 1

ª®¬ª®¬
for 𝑟/𝑛 → 𝑐 ∈ (0, 1) as 𝑛 → ∞. The application of the delta method (see, [25,
Theorem 3.7]) leads to the statement of the theorem. ■

3 Finite-sample Performance

In this section, we study the properties of the high-dimensional asymptotic approxi-
mations of the standardised sample estimators of the expected return and the variance
of the EU optimal portfolio via simulations.
We consider the sample size 𝑛 = {50, 120, 250, 500} corresponding to one year,

two years, five years and ten years of weekly financial returns and the dimension of
assets grows with the sample size, 𝑘 = 1.5𝑛. The concentration ratio is 𝑐 = {0.5, 0.8}
so that the rank of the singular covariance matrix 𝚺 is 𝑟 = 𝑐𝑛, and the risk aversion
is 𝛼 = 100. We sample the vector of expected returns 𝝁 and the population singular
covariance matrix 𝚺 following [17]. Each element in the vector 𝝁 is drawn from
the uniform distribution on [−1, 1]. The population singular covariance matrix 𝚺
is obtained by generating eigenvalues and eigenvectors of 𝚺. Firstly, the 𝑟 non-zero
eigenvalues of 𝚺 are drawn from the uniform distribution in the unit domain and the
remain 𝑘 − 𝑟 eigenvalues are set to zero. Secondly, the eigenvectors of 𝚺 is generated
from the Haar distribution by calculating eigenvectors of a random matrix following
a Wishart distribution with identity scale matrix and 𝑘 degrees of freedom.
The sample mean and sample variance of the EU portfolio are calculated using

𝑁 = 100000 repetitions using the same generated values of 𝝁 and 𝚺 as follows:

• Step 1: Calculate the expected return 𝑅+
𝐸𝑈
and variance 𝑉+

𝐸𝑈
of the EU portfolio

using (8).
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• Step 2: Generate samples of 𝑅+
𝐸𝑈
and variance𝑉+

𝐸𝑈
from their exact distributions

by using the stochastic representations in Theorem 1,

𝑅+
𝐸𝑈

𝑑
= 𝑅+

𝐺𝑀𝑉 + 𝛼−1 (𝑛 − 1) (𝑟 − 1)
𝑛(𝑛 − 𝑟 + 1) 𝜉 +

√︄
1
𝑛

(
1 + 𝑟 − 1

𝑛 − 𝑟 + 1
𝜉

)√︃
𝑉+
𝐺𝑀𝑉

𝑧0

and

𝑉+
𝐸𝑈

𝑑
=
𝑉+
𝐺𝑀𝑉

𝑛 − 1
𝜂 + 𝛼−2 (𝑛 − 1) (𝑟 − 1)

𝑛(𝑛 − 𝑟 + 1) 𝜉,

where 𝜉 ∼ F𝑟−1,𝑛−𝑟+1,𝑛𝑠+ , 𝜂 ∼ 𝜒2
𝑛−𝑟 , and 𝑧0 ∼ N(0, 1).

• Step 3: Evaluate the standardized variables in Theorem 4 by

s𝑅+
𝐸𝑈 =

√︄
𝑛

𝜎2
𝑅+
𝐸𝑈

(𝑅+
𝐸𝑈 − 𝑅+

𝐸𝑈),

s𝑉+
𝐸𝑈 =

√︄
𝑛

𝜎2
𝑉+
𝐸𝑈

(𝑉+
𝐸𝑈 −𝑉+

𝐸𝑈).

Figures 1 and 2 show the asymptotic distribution (solid line) and the kernel
density estimator (dashed line) of the finite-sample distribution of standardised s𝑅+

𝐸𝑈

and s𝑉+
𝐸𝑈
for 𝑐 = {0.5, 0.8} respectively. There is a large difference between the

finite sample and the asymptotic distributions when the number of sample is small,
however the finite sample density coincides with the asymptotic density when the
sample size becomes larger, 𝑛 ≥ 250. These findings are inline with Table 1 where
the sample mean and sample variance of standardised s𝑅+

𝐸𝑈
and s𝑉+

𝐸𝑈
are shown with

different values of sample sizes and concentration ratios. Both sample quantities
reach the asymptotic standardised normal distribution as sample size increases.

Table 1 Sample mean and sample variance of standardised s𝑅+
𝐸𝑈
and s𝑉+

𝐸𝑈

𝑛 = 50 𝑛 = 120 𝑛 = 250 𝑛 = 500
Panel (a) - s𝑅+

𝐸𝑈

𝑐 = 0.50 Sample mean 0.053429 0.045069 0.036535 0.022397
Sample variance 1.122271 1.064992 1.035233 1.020149

𝑐 = 0.80 Sample mean 0.190551 0.125916 0.080326 0.054470
Sample variance 1.701651 1.226259 1.093531 1.049863

Panel (b) - s𝑉+
𝐸𝑈

𝑐 = 0.50 Sample mean 0.098852 0.046847 0.037295 0.022291
Sample variance 1.095661 1.067031 1.034508 1.020210

𝑐 = 0.80 Sample mean 0.195541 0.126426 0.080406 0.054534
Sample variance 1.714786 1.226477 1.093548 1.049995
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Fig. 1 Asymptotic distribution and the kernel density estimator of the finite-sample distribution of
standardised s𝑅+

𝐸𝑈
and s𝑉+

𝐸𝑈
for 𝑐 = 0.5.
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Fig. 2 Asymptotic distribution and the kernel density estimator of the finite-sample distribution of
standardised s𝑅+

𝐸𝑈
and s𝑉+

𝐸𝑈
for 𝑐 = 0.8.
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4 Summary

Optimal portfolio selection plays an important role in both theory and practice of fi-
nancial market research. While most of the results in the theory are derived under the
assumption that the population covariance matrix is nonsingular, we extend the exist-
ing findings to the case of a singular covariance matrix. We deal with the problem of
estimating the expected return and the variance of the EU optimal portfolio and with
the characterization of their sampling distribution. Very useful stochastic represen-
tations of the estimated expected return and estimated variance of the EU portfolio
are deduced, which are later used in the derivation of their higher-order moments,
their density function, and their asymptotic distributions in the high-dimensional set-
ting. Via simulations, it is shown that the high-dimensional asymptotic distributions
provide good approximations already for samples of moderate sizes.
The results of the paper are derived under the assumption that the rank of the

covariance matrix is smaller than the sample size. This assumption imposes some
restrictions on possible data-generating processes, which can be used to model the
asset returns. Future research can be performed by weakening this assumption and
dealing with the case when the sample size is smaller than the rank of the covariance
matrix.
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